Unsupervised classification#
Unsupervised classifications is an alternative to tedious manual classification of song types: Use DAS via the GUI or the command line to detect anything that you think is song and then classify song into different types afterwards. The song types discovered with unsupervised methods can then be used to create a training dataset for training DAS to directly label the different song types.
DAS-unsupervised provides tools for applying this approach with a focus on pre-processing acoustic signals for unsupervised classification:
extract waveforms or spectrograms of acoustic events from a recording
normalize the duration, center frequency, amplitude, or sign of waveform/spectrograms
Unsupervised classification itself is performed using existing libraries:
dimensionality reduction: umap
clustering: hdbscan or scikit-learn
Code for the unsupervised classification can be found at https://github.com/janclemenslab/DAS_unsupervised.
Examples#
We illustrate different pre-processing and classification strategies using three different examples
Courtship song of flies - normalize waveforms to automatically detect sine song and different pulse types.
Song of Bengalese finches - process syllable spectrograms to classify >40 syllable types.
Ultrasonic vocalizations from mice - process syllable spectrograms to group syllables by the shape of their spectral contours.
Acknowledgements#
Code from the following open source packages was modified and integrated into das-unsupervised:
avgn (Sainburg et al. 2020)
fly pulse classifier (Clemens et al. 2018)
Data sources:
flies: David Stern (Stern, 2014)
birds: Bengalese finch song repository (Nicholson et al. 2017)
References#
T Sainburg, M Thielk, TQ Gentner (2020) Latent space visualization, characterization, and generation of diverse vocal communication signals. Biorxiv . https://doi.org/10.1101/870311
J Clemens, P Coen, F Roemschied, T Perreira, D Mazumder, D Aldorando, D Pacheco, M Murthy (2018) Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural Drivers of Behavior. Current Biology 28, 2400–2412.e6 (2018). https://doi.org/10.1016/j.cub.2018.06.011
D Stern (2014). Reported Drosophila courtship song rhythms are artifacts of data analysis. BMC Biology
A Ivanenko, P Watkins, MAJ van Gerven, K Hammerschmidt, B Englitz (2020) Classifying sex and strain from mouse ultrasonic vocalizations using deep learning. PLoS Comput Biol 16(6): e1007918. https://doi.org/10.1371/journal.pcbi.1007918
D Nicholson, JE Queen, S Sober (2017). Bengalese finch song repository. https://doi.org/10.6084/m9.figshare.4805749.v5