das.tcn.tcn#
- class das.tcn.tcn.TCN(nb_filters=64, kernel_size=2, nb_stacks=1, dilations=None, activation='norm_relu', use_skip_connections=True, use_separable=False, padding='causal', dropout_rate=0.0, return_sequences=True, name='tcn')[source]#
Creates a TCN layer.
- Parameters
input_layer – A tensor of shape (batch_size, timesteps, input_dim).
nb_filters – The number of filters to use in the convolutional layers.
kernel_size – The size of the kernel to use in each convolutional layer.
dilations – The list of the dilations. Example is: [1, 2, 4, 8, 16, 32, 64].
nb_stacks – The number of stacks of residual blocks to use.
activation – The activations to use (norm_relu, wavenet, relu…).
use_skip_connections – Boolean. If we want to add skip connections from input to each residual block.
use_separable – Boolean. Use separable convolutions in each residual block.
return_sequences – Boolean. Whether to return the last output in the output sequence, or the full sequence.
padding – The padding to use in the convolutional layers, ‘causal’ or ‘same’.
dropout_rate – Float between 0 and 1. Fraction of the input units to drop.
name – Name of the model. Useful when having multiple TCN.
- Returns
A TCN layer.
- das.tcn.tcn.channel_normalization(x: keras.engine.base_layer.Layer) keras.engine.base_layer.Layer [source]#
Normalize a layer to the maximum activation
This keeps a layers values between zero and one. It helps with relu’s unbounded activation
- Parameters
x – The layer to normalize
- Returns
A maximal normalized layer
- das.tcn.tcn.residual_block(x: keras.engine.base_layer.Layer, s: int, i: int, activation: str, nb_filters: int, kernel_size: int, padding: str = 'causal', use_separable: bool = False, dropout_rate: float = 0, name: str = '') Tuple[keras.engine.base_layer.Layer, keras.engine.base_layer.Layer] [source]#
Defines the residual block for the WaveNet TCN
- Parameters
x – The previous layer in the model
s – The stack index i.e. which stack in the overall TCN
i – The dilation power of 2 we are using for this residual block
activation – The name of the type of activation to use
nb_filters – The number of convolutional filters to use in this block
kernel_size – The size of the convolutional kernel
padding – The padding used in the convolutional layers, ‘same’ or ‘causal’.
use_separable – Use separable convolution
dropout_rate – Float between 0 and 1. Fraction of the input units to drop.
name – Name of the model. Useful when having multiple TCN.
- Returns
A tuple where the first element is the residual model layer, and the second is the skip connection.
- das.tcn.tcn.wave_net_activation(x: keras.engine.base_layer.Layer) keras.engine.base_layer.Layer [source]#
This method defines the activation used for WaveNet
described in https://deepmind.com/blog/wavenet-generative-model-raw-audio/
- Parameters
x – The layer we want to apply the activation to
- Returns
A new layer with the wavenet activation applied