das.kapre.backend#
Kapre backend functions#
backend_keras.py
.Notes
Don’t forget to use
K.float()
! Otherwise numpy uses float64.- Some functions are copied-and-pasted from librosa (to reduce dependency), but
later I realised it’d be better to just use it.
TODO: remove copied code and use librosa.
- das.kapre.backend.filterbank_log(sr, n_freq, n_bins=84, bins_per_octave=12, fmin=None, spread=0.125)[source]#
[np] Approximate a constant-Q filter bank for a fixed-window STFT.
Each filter is a log-normal window centered at the corresponding frequency.
- Note:
logfrequency
in librosa 0.4 (deprecated), so copy-and-pasted, tuning
was removed,n_freq
instead ofn_fft
.
- Parameters
sr (number > 0 [scalar]) – audio sampling rate
n_freq (int > 0 [scalar]) – number of frequency bins
n_bins (int > 0 [scalar]) – Number of bins. Defaults to 84 (7 octaves).
bins_per_octave (int > 0 [scalar]) – Number of bins per octave. Defaults to 12 (semitones).
fmin (float > 0 [scalar]) – Minimum frequency bin. Defaults to
C1 ~= 32.70
spread (float > 0 [scalar]) – Spread of each filter, as a fraction of a bin.
- Returns
C – log-frequency filter bank.
- Return type
np.ndarray [shape=(n_bins, 1 + n_fft/2)]
- Note:
- das.kapre.backend.filterbank_mel(sr, n_freq, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1)[source]#
[np]
- das.kapre.backend.get_stft_kernels(n_dft)[source]#
- [np] Return dft kernels for real/imagnary parts assuming
the input . is real.
An asymmetric hann window is used (scipy.signal.hann).
- Parameters
n_dft (int > 0 and power of 2 [scalar]) – Number of dft components.
- Returns
| dft_real_kernels (np.ndarray [shape=(nb_filter, 1, 1, n_win)])
| dft_imag_kernels (np.ndarray [shape=(nb_filter, 1, 1, n_win)])
nb_filter = n_dft/2 + 1
n_win = n_dft
- das.kapre.backend.mel(sr, n_dft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1)[source]#
[np] create a filterbank matrix to combine stft bins into mel-frequency bins use Slaney (said Librosa)
n_mels: numbre of mel bands fmin : lowest frequency [Hz] fmax : highest frequency [Hz]
If
None
, usesr / 2.0