das.block_stratify#
A bit on semantics: - blocks are parts of the data (individual files in a file list, parts of a data array) - individual blocks are assigned specific groups (train/test/val)
- das.block_stratify.blockstats_from_data(data: numpy.ndarray, block_size: int, gap: int = 0) Dict[Tuple[int, int], numpy.ndarray] [source]#
_summary_
Last block will contain overhang so is typically longer
- Parameters
data (np.ndarray) – _description_
block_size (int) – _description_
gap (int, optional) –
- Returns
_description_
- Return type
Dict[Tuple[int, int], np.array]
- das.block_stratify.blockstats_from_files(file_bases: List[str], class_names: Optional[List] = None) Dict[str, numpy.ndarray] [source]#
_summary_
- Parameters
file_bases (List[str]) – List of annotation files.
class_names (Optional[List]) – List of class_names. Defaults to None (will infer from all annotations).
- Returns
Block stats for each file name.
- Return type
Dict[str, np.ndarray]