das.models_legacy#
Defines the network architectures.
- das.models_legacy.cnn(nb_freq, nb_classes, nb_channels=1, nb_hist=1, nb_filters=16, nb_stacks=2, kernel_size=3, nb_conv=3, loss='categorical_crossentropy', batch_norm=False, return_sequences=False, sample_weight_mode: Optional[str] = None, learning_rate: float = 0.0001, **kwignored)[source]#
CNN for single-frequency and multi-channel data - uses 1D convolutions.
- Parameters
nb_freq ([type]) – [description]
nb_classes ([type]) – [description]
nb_channels (int, optional) – [description]. Defaults to 1.
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
nb_stacks (int, optional) – [description]. Defaults to 2.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 3.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
batch_norm (bool, optional) – [description]. Defaults to False.
return_sequences (bool, optional) – [description]. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Raises
ValueError – When trying to init model with return_sequences. The cnn only does instance classificaton, not regression (sequence prediction).
- Returns
[description]
- Return type
[type]
- das.models_legacy.cnn2D(nb_freq, nb_classes, nb_channels=1, nb_hist=1, nb_filters=16, nb_stacks=2, kernel_size=3, nb_conv=3, loss='categorical_crossentropy', batch_norm=False, return_sequences=False, sample_weight_mode: Optional[str] = None, learning_rate: float = 0.0001, **kwignored)[source]#
CNN for multi-frequency and multi-channel data - uses 2D convolutions.
- Parameters
nb_freq ([type]) – [description]
nb_classes ([type]) – [description]
nb_channels (int, optional) – [description]. Defaults to 1.
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
nb_stacks (int, optional) – [description]. Defaults to 2.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 3.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
batch_norm (bool, optional) – [description]. Defaults to False.
return_sequences (bool, optional) – [description]. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Raises
ValueError – When trying to init model with return_sequences. The cnn only does instance classificaton, not regression (sequence prediction).
- Returns
[description]
- Return type
[type]
- das.models_legacy.fcn(nb_freq, nb_classes, nb_channels=1, nb_hist=1, nb_filters=16, nb_stacks=2, kernel_size=3, nb_conv=3, loss='categorical_crossentropy', batch_norm=False, return_sequences=True, sample_weight_mode: Optional[str] = None, learning_rate: float = 0.0001, **kwignored)[source]#
[summary]
- Parameters
nb_freq ([type]) – [description]
nb_classes ([type]) – [description]
nb_channels (int, optional) – [description]. Defaults to 1.
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
nb_stacks (int, optional) – [description]. Defaults to 2.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 3.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
batch_norm (bool, optional) – [description]. Defaults to False.
return_sequences (bool, optional) – [description]. Defaults to True.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
[description]
- Return type
[type]
- das.models_legacy.fcn2D(nb_freq, nb_classes, nb_channels=1, nb_hist=1, nb_filters=16, nb_stacks=2, kernel_size=3, nb_conv=3, loss='categorical_crossentropy', batch_norm=False, return_sequences=True, sample_weight_mode: Optional[str] = None, learning_rate: float = 0.0005, **kwignored)[source]#
[summary]
- Parameters
nb_freq ([type]) – [description]
nb_classes ([type]) – [description]
nb_channels (int, optional) – [description]. Defaults to 1.
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
nb_stacks (int, optional) – [description]. Defaults to 2.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 3.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
batch_norm (bool, optional) – [description]. Defaults to False.
return_sequences (bool, optional) – [description]. Defaults to True.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
[description]
- Return type
[type]
- das.models_legacy.tcn_multi(nb_freq: int, nb_classes: int, nb_hist: int = 1, nb_filters: int = 16, kernel_size: int = 3, nb_conv: int = 1, loss: str = 'categorical_crossentropy', dilations: List[int] = [1, 2, 4, 8, 16], activation: str = 'norm_relu', use_skip_connections: bool = True, return_sequences: bool = True, dropout_rate: float = 0.0, padding: str = 'same', sample_weight_mode: Optional[str] = None, learning_rate: float = 0.0005, use_separable: bool = False, pre_kernel_size: int = 16, pre_nb_filters: int = 16, pre_nb_conv: int = 2, **kwignored)[source]#
Create TCN network with TCN layer as pre-processing and downsampling frontend with weights shared between channels.
- Parameters
nb_freq (int) – [description]
nb_classes (int) – [description]
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 1.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
dilations (List[int], optional) – [description]. Defaults to [1, 2, 4, 8, 16].
activation (str, optional) – [description]. Defaults to ‘norm_relu’.
use_skip_connections (bool, optional) – [description]. Defaults to True.
return_sequences (bool, optional) – [description]. Defaults to True.
dropout_rate (float, optional) – [description]. Defaults to 0.00.
padding (str, optional) – [description]. Defaults to ‘same’.
learning_rate (float, optional) –
use_separable (bool, optional) – use separable convs in residual block. Defaults to False.
nb_pre_conv (int, optional) – If >0 adds a single STFT layer with a hop size of 2**nb_pre_conv before the TCN. Useful for speeding up training by reducing the sample rate early in the network. Defaults to 0 (no downsampling)
pre_nb_filters –
pre_kernelsize –
pre_nb_conv –
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
Compiled TCN network model.
- Return type
[keras.models.Model]
- das.models_legacy.tcn_seq(nb_freq: int, nb_classes: int, nb_hist: int = 1, nb_filters: int = 16, kernel_size: int = 3, nb_conv: int = 1, loss: str = 'categorical_crossentropy', dilations: List[int] = [1, 2, 4, 8, 16], activation: str = 'norm_relu', use_skip_connections: bool = True, return_sequences: bool = True, dropout_rate: float = 0.0, padding: str = 'same', sample_weight_mode: Optional[str] = None, nb_pre_conv: int = 0, learning_rate: float = 0.0001, upsample: bool = True, out_activation: str = 'softmax', use_separable: bool = False, **kwignored)[source]#
Create TCN network.
- Parameters
nb_freq (int) – [description]
nb_classes (int) – [description]
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 1.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
dilations (List[int], optional) – [description]. Defaults to [1, 2, 4, 8, 16].
activation (str, optional) – [description]. Defaults to ‘norm_relu’.
use_skip_connections (bool, optional) – [description]. Defaults to True.
return_sequences (bool, optional) – [description]. Defaults to True.
dropout_rate (float, optional) – [description]. Defaults to 0.00.
padding (str, optional) – [description]. Defaults to ‘same’.
nb_pre_conv (int, optional) – number of conv-relu-batchnorm-maxpool2 blocks before the TCN - useful for reducing the sample rate. Defaults to 0
upsample (bool, optional) – whether or not to restore the model output to the input samplerate. Should generally be True during training and evaluation but my speed up inference . Defaults to True.
out_activation (str, optional) – activation type for the output. Defaults to ‘softmax’.
use_separable (bool, optional) – use separable convs in residual block. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ignored
- Returns
Compiled TCN network model.
- Return type
[keras.models.Model]
- das.models_legacy.tcn_small(nb_freq: int, nb_classes: int, nb_hist: int = 1, nb_filters: int = 16, kernel_size: int = 3, nb_conv: int = 1, loss: str = 'categorical_crossentropy', dilations: List[int] = [1, 2, 4, 8, 16], activation: str = 'norm_relu', use_skip_connections: bool = True, return_sequences: bool = True, dropout_rate: float = 0.0, padding: str = 'same', sample_weight_mode: Optional[str] = None, nb_pre_conv: int = 0, learning_rate: float = 0.0005, upsample: bool = True, use_separable: bool = False, **kwignored)[source]#
Create TCN network with TCN layer as pre-processing and downsampling frontend.
- Parameters
nb_freq (int) – [description]
nb_classes (int) – [description]
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 1.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
dilations (List[int], optional) – [description]. Defaults to [1, 2, 4, 8, 16].
activation (str, optional) – [description]. Defaults to ‘norm_relu’.
use_skip_connections (bool, optional) – [description]. Defaults to True.
return_sequences (bool, optional) – [description]. Defaults to True.
dropout_rate (float, optional) – [description]. Defaults to 0.00.
padding (str, optional) – [description]. Defaults to ‘same’.
nb_pre_conv (int, optional) – If >0 adds a single TCN layer with a final maxpooling layer with block size of
2**nb_pre_conv
before the TCN. Useful for speeding up training by reducing the sample rate early in the network. Defaults to 0 (no downsampling)learning_rate (float, optional) –
upsample (bool, optional) – whether or not to restore the model output to the input samplerate. Should generally be True during training and evaluation but my speed up inference . Defaults to True.
use_separable (bool, optional) – use separable convs in residual block. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
Compiled TCN network model.
- Return type
[keras.models.Model]
- das.models_legacy.tcn_stft(nb_freq: int, nb_classes: int, nb_hist: int = 1, nb_filters: int = 16, kernel_size: int = 3, nb_conv: int = 1, loss: str = 'categorical_crossentropy', dilations: Optional[List[int]] = None, activation: str = 'norm_relu', use_skip_connections: bool = True, return_sequences: bool = True, dropout_rate: float = 0.0, padding: str = 'same', sample_weight_mode: Optional[str] = None, nb_pre_conv: int = 0, pre_nb_dft: int = 64, nb_lstm_units: int = 0, learning_rate: float = 0.0005, upsample: bool = True, use_separable: bool = False, **kwignored)[source]#
Create TCN network with optional trainable STFT layer as pre-processing and downsampling frontend.
- Parameters
nb_freq (int) – [description]
nb_classes (int) – [description]
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 1.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
dilations (List[int], optional) – [description]. Defaults to [1, 2, 4, 8, 16].
activation (str, optional) – [description]. Defaults to ‘norm_relu’.
use_skip_connections (bool, optional) – [description]. Defaults to True.
return_sequences (bool, optional) – [description]. Defaults to True.
dropout_rate (float, optional) – [description]. Defaults to 0.00.
padding (str, optional) – [description]. Defaults to ‘same’.
nb_pre_conv (int, optional) – If >0 adds a single STFT layer with a hop size of 2**nb_pre_conv before the TCN. Useful for speeding up training by reducing the sample rate early in the network. Defaults to 0 (no downsampling)
pre_nb_dft (int, optional) – Number of filters (roughly corresponding to filters) in the STFT frontend. Defaults to 64.
learning_rate (float, optional) –
nb_lstm_units (int, optional) – Defaults to 0.
upsample (bool, optional) – whether or not to restore the model output to the input samplerate. Should generally be True during training and evaluation but may speed up inference. Defaults to True.
use_separable (bool, optional) – use separable convs in residual block. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
Compiled TCN network model.
- Return type
[keras.models.Model]
- das.models_legacy.tcn_tcn(nb_freq: int, nb_classes: int, nb_hist: int = 1, nb_filters: int = 16, kernel_size: int = 3, nb_conv: int = 1, loss: str = 'categorical_crossentropy', dilations: List[int] = [1, 2, 4, 8, 16], activation: str = 'norm_relu', use_skip_connections: bool = True, return_sequences: bool = True, dropout_rate: float = 0.0, padding: str = 'same', sample_weight_mode: Optional[str] = None, nb_pre_conv: int = 0, learning_rate: float = 0.0005, upsample: bool = True, use_separable: bool = False, **kwignored)[source]#
Create TCN network with TCN layer as pre-processing and downsampling frontend.
- Parameters
nb_freq (int) – [description]
nb_classes (int) – [description]
nb_hist (int, optional) – [description]. Defaults to 1.
nb_filters (int, optional) – [description]. Defaults to 16.
kernel_size (int, optional) – [description]. Defaults to 3.
nb_conv (int, optional) – [description]. Defaults to 1.
loss (str, optional) – [description]. Defaults to “categorical_crossentropy”.
dilations (List[int], optional) – [description]. Defaults to [1, 2, 4, 8, 16].
activation (str, optional) – [description]. Defaults to ‘norm_relu’.
use_skip_connections (bool, optional) – [description]. Defaults to True.
return_sequences (bool, optional) – [description]. Defaults to True.
dropout_rate (float, optional) – [description]. Defaults to 0.00.
padding (str, optional) – [description]. Defaults to ‘same’.
nb_pre_conv (int, optional) – If >0 adds a single TCN layer with a final maxpooling layer with block size of
2**nb_pre_conv
before the TCN. Useful for speeding up training by reducing the sample rate early in the network. Defaults to 0 (no downsampling)learning_rate (float, optional) –
upsample (bool, optional) – whether or not to restore the model output to the input samplerate. Should generally be True during training and evaluation but my speed up inference . Defaults to True.
use_separable (bool, optional) – use separable convs in residual block. Defaults to False.
kwignored (Dict, optional) – additional kw args in the param dict used for calling m(**params) to be ingonred
- Returns
Compiled TCN network model.
- Return type
[keras.models.Model]