das.kapre.utils#

class das.kapre.utils.AmplitudeToDB(*args, **kwargs)[source]#

Converts spectrogram values to decibels.

Examples

Adding dB conversion after a spectrogram:

>>> model.add(Spectrogram(return_decibel=False))
>>> model.add(AmplitudeToDB())
which is the same as:
>>> model.add(Spectrogram(return_decibel=True))

Args: amin (float, optional): Noise floor. Defaults to 1e-10 (dB). top_db (float, optional): Dynamic range of output. Defaults to 80.0 (dB).

call(x, mask=None)[source]#

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
  • inputs

    Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero

    arguments, and inputs cannot be provided via the default value of a keyword argument.

    • NumPy array or Python scalar values in inputs get cast as tensors.

    • Keras mask metadata is only collected from inputs.

    • Layers are built (build(input_shape) method) using shape info from inputs only.

    • input_spec compatibility is only checked against inputs.

    • Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.

    • The SavedModel input specification is generated using inputs only.

    • Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

  • *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

  • **kwargs

    Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - training: Boolean scalar tensor of Python boolean indicating

    whether the call is meant for training or inference.

    • mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns

A tensor or list/tuple of tensors.

get_config()[source]#

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns

Python dictionary.

class das.kapre.utils.Normalization2D(*args, **kwargs)[source]#

Normalizes input along an axis.

Examples

A frequency-axis normalization after a spectrogram:

>>> model.add(Spectrogram())
>>> model.add(Normalization2D(str_axis='freq'))

[summary]

Parameters
  • str_axis (Optional[str], optional) – Axis name along which mean/std is computed (batch, data_sample, channel, freq, time). Recommended over int_axis because it provides more meaningful and image data format-robust interface. Defaults to None.

  • int_axis (Optional[int], optional) –

    Axis index along which mean/std is computed.
    • 0 for per data sample, -1 for per batch.

    • 1, 2, 3 for channel, row, col (if channels_first)

    Defaults to None.

  • image_data_format (str, optional) – ‘channels_first’ (c,x,y,) or ‘channels_last’ (x,y,c) or TF ‘default’. Defaults to ‘default’.

  • eps (float, optional) – Small numerical value added to avoid divide by zero. Defaults to 1e-10.

call(x, mask=None)[source]#

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
  • inputs

    Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero

    arguments, and inputs cannot be provided via the default value of a keyword argument.

    • NumPy array or Python scalar values in inputs get cast as tensors.

    • Keras mask metadata is only collected from inputs.

    • Layers are built (build(input_shape) method) using shape info from inputs only.

    • input_spec compatibility is only checked against inputs.

    • Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.

    • The SavedModel input specification is generated using inputs only.

    • Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

  • *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

  • **kwargs

    Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - training: Boolean scalar tensor of Python boolean indicating

    whether the call is meant for training or inference.

    • mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns

A tensor or list/tuple of tensors.

get_config()[source]#

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns

Python dictionary.