das.annot#
Utilities for dealing with annotations.
- class das.annot.Events(data: Optional[Dict[str, List[float]]] = None, categories: Optional[Dict[str, str]] = None, add_names_from_categories: bool = True)[source]#
 Utility class for dealing with annotations.
- add_name(name, category='segment', times=None, overwrite: bool = False, append: bool = False, sort_after_append: bool = False)[source]#
 [summary]
- Parameters
 name ([type]) – [description]
category (str, optional) – [description]. Defaults to ‘segment’.
times ([type], optional) – [description]. Defaults to None.
overwrite (bool, optional) – [description]. Defaults to False.
append (bool, optional) – [description]. Defaults to False.
sort_after_append (bool, optional) – [description]. Defaults to False.
- add_time(name, start_seconds, stop_seconds=None)[source]#
 [summary]
- Parameters
 name ([type]) – [description]
start_seconds ([type]) – [description]
stop_seconds ([type], optional) – [description]. Defaults to None.
- delete_range(name, t0, t1, strict: bool = True)[source]#
 Deletes events within the range.
Need to start and stop after t0 and before t1 (non-inclusive bounds).
- Parameters
 name ([type]) – [description]
t0 ([type]) – [description]
t1 ([type]) – [description]
strict (bool) – if true, only matches events that start AND stop within the range, if false, matches events that start OR stop within the range
- Returns
 number of deleted events
- Return type
 int
- filter_range(name, t0, t1, strict: bool = False)[source]#
 Returns events within the range.
Need to start and stop after t0 and before t1 (non-inclusive bounds).
- Parameters
 name ([type]) – [description]
t0 ([type]) – [description]
t1 ([type]) – [description]
strict (bool) – if true, only matches events that start AND stop within the range, if false, matches events that start OR stop within the range
- Returns
 [N, 2] list of start_seconds and stop_seconds in the range
- Return type
 List[float]
- classmethod from_dataset(ds)[source]#
 [summary]
- Parameters
 ds ([type]) – [description]
- Returns
 [description]
- Return type
 [type]
- classmethod from_df(df, possible_event_names: Optional[List] = None)[source]#
 [summary]
- Parameters
 df (pd.DataFrame) – with columns
name,start_seconds,end_seconds.possible_event_names (list, optional) – [description]. Defaults to [].
- Returns
 [description]
- Return type
 
- classmethod from_lists(names, start_seconds, stop_seconds, possible_event_names: Optional[List] = None)[source]#
 [summary]
- Parameters
 names ([type]) – [description]
start_seconds ([type]) – [description]
stop_seconds ([type]) – [description]
possible_event_names (list, optional) – [description]. Defaults to [].
- Returns
 [description]
- Return type
 [type]
- move_time(name, old_time, new_time)[source]#
 [summary]
- Parameters
 name ([type]) – [description]
old_time ([type]) – [description]
new_time ([type]) – [description]
- select_range(name: str, t0: Optional[float] = None, t1: Optional[float] = None, strict: bool = True)[source]#
 Get indices of events within the range.
Need to start and stop after t0 and before t1 (non-inclusive bounds).
- Parameters
 name (str) – [description]
t0 (float, optional) – [description]
t1 (float, optional) – [description]
strict (bool, optional) – if true, only matches events that start AND stop within the range, if false, matches events that start OR stop within the range
- Returns
 List of indices of events within the range
- Return type
 List[uint]
- to_dataset() xarray.core.dataset.Dataset[source]#
 Returns an xarray dataset.
- Returns
 with the data arrays
event_namesandevent_times.- Return type
 xr.Dataset
- to_df(preserve_empty: bool = True) pandas.core.frame.DataFrame[source]#
 Convert to pandas.DataFrame
- Parameters
 preserve_empty (bool, optional) – In keeping with the convention that events have identical start and stop times and segments do not, empty events are coded with np.nan as both start and stop and empty segments are coded as np.nan as start and 0 as stop.
from_df()will obey this convention - if both start and stop are np.nan, the name will be a segment, if only the start is np.nan (the stop does not matter), the name will be an event Defaults to True.- Returns
 with columns
name,start_seconds,stop_seconds, one row per event.- Return type
 pandas.DataFrame