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From 1980 to 1992, a series of influential papers reported on the
discovery, genetics, and evolution of a periodic cycling of the interval
between Drosophilamale courtship song pulses. The molecular mech-
anisms underlying this periodicity were never described. To reinitiate
investigation of this phenomenon, we previously performed auto-
mated segmentation of songs but failed to detect the proposed
rhythm [Arthur BJ, et al. (2013) BMC Biol 11:11; Stern DL (2014)
BMC Biol 12:38]. Kyriacou et al. [Kyriacou CP, et al. (2017) Proc Natl
Acad Sci USA 114:1970–1975] report that we failed to detect song
rhythms because (i) our flies did not sing enough and (ii) our seg-
menter did not identify many of the song pulses. Kyriacou et al.
manually annotated a subset of our recordings and reported that
two strains displayed rhythms with genotype-specific periodicity, in
agreement with their original reports. We cannot replicate this find-
ing and show that the manually annotated data, the original auto-
matically segmented data, and a new dataset provide no evidence for
either the existence of song rhythms or song periodicity differences
between genotypes. Furthermore, we have reexamined our methods
and analysis and find that our automated segmentation method was
not biased to prevent detection of putative song periodicity. We con-
clude that there is no evidence for the existence of Drosophila court-
ship song rhythms.

Drosophila | courtship song | song rhythms

When a male vinegar fly (Drosophila melanogaster) encoun-
ters a sexually receptive female, he performs a series of

courtship behaviors, including the production of songs containing
pulses and hums (or sines) via unilateral wing vibration (Fig. 1A).
Every parameter of song displays extensive quantitative variation
within a bout of singing, including the amplitude and frequency of
pulses and sines and the timing of individual pulse and sine events
(1–8). Like humans during conversation, Drosophila males mod-
ulate their song based on sensory feedback from their communi-
cation partner (3, 4).
Visual inspection of songs reveals that the mean interpulse

interval varies over time (Fig. 1B). This observation was first
made in 1980 by Kyriacou and Hall (9) and they reported that the
mean cycled with a periodicity of about 55 s and was controlled,
in part, by the period gene, a gene required for circadian rhythms
(10). Later papers demonstrated that evolution of a short amino
acid sequence within the period protein caused species-specific
differences in this periodicity (10–13). These reports attracted
considerable interest because they implicated the period gene in
ultradian rhythms, in addition to its well-known role in circadian
rhythms (14), and because they illustrated how genetic evolution
can cause behavioral evolution.
Despite this progress, the molecular mechanisms causing this

periodicity remained unknown. To further advance study of
these rhythms, previously we searched for this periodicity using
sensitive methods and failed to find evidence for song rhythms
(1). We were mindful, however, that Kyriacou and Hall (15) had
argued that the presence or detectability of the rhythms was
sensitive to assay conditions and methods of analysis. One of us,

therefore, replicated the methods of Kyriacou and Hall as closely
as possible, but, again, song rhythms could not be detected (2).
Kyriacou et al. (16) have recently questioned our previous con-

clusions. Here, we focus on three major assertions that they claim call
our conclusions into doubt. First, we examine their central claim that
manual analysis of songs, but not automated analysis, reveals
genotype-specific song rhythms. We find that reanalysis of their
manually annotated data provides no statistical support for genotype-
specific rhythms. We also find no evidence for song rhythms in the
original dataset and a new larger dataset. Second, we examined their
claim that the original recordings contained insufficient data to de-
tect rhythms and find that this claim is not supported by simulation
studies. Third, we examine their claim that the high false-negative
rate of the automated song segmenter decreased the probability of
detecting song rhythms and we find no evidence that the missing
pulse events biased our analysis of song rhythms. Further, we identify
the major sources of false-negative events in automated song analysis
and illustrate that minor modifications to initialization parameters
substantially improve performance of the song segmenter. Kyriacou
et al. (16) also raised a number of minor concerns—such as how to
choose an appropriate interpulse-interval cutoff, whether tempera-
ture was controlled appropriately in our experiments, and whether
songs produced beyond the first few minutes of courtship should be
analyzed—that we consider peripheral to the central questions raised
and therefore we have addressed these concerns (which are also
unsupported by reanalysis) in SI Appendix.

Results
Earlier papers that identified song cycles used several unusual
methods of data analysis that are useful to review. First, continuous
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interpulse-interval data were binned into 10-s intervals. We repor-
ted previously that binning the data, together with the analysis of
relatively short songs, creates peaks in spectrogram analysis that fall
within an artificially narrowed frequency range, corresponding ap-
proximately to the frequency range originally reported for the pe-
riodicity, and reduces the significance of periodiogram peaks (ref. 2
and see below). Despite the fact that this procedure squeezes
periodogram results into a narrow frequency range, few songs
contained peaks reaching a significance level of P < 0.05 (4 of
149 songs, figure 3A of ref. 2), strongly suggesting that these peaks
represent signals that cannot be distinguished from noise. All of the
previously reported “statistically significant” comparisons of dif-
ferent genotypes are derived from analysis of mainly nonsignificant
periodogram peaks. In this reevaluation, we do not discuss binning,
but instead focus on other methodological issues.

No Evidence That Manual Song Segmentation Reveals Genotype-
Specific Song Rhythms. Kyriacou et al.’s (16) core finding is that
different genotypes displayed different periodic rhythms of the
interpulse interval. This is also the most important discovery
reported in earlier papers on this subject (10–12, 17). Kyriacou
et al. (16) manually annotated recordings made by Stern (2) from
a wild-type strain, Canton-S, and a strain carrying a period gene
mutation, perL, for flies they categorized as singing “vigorously.”
We reanalyzed these data and the automatically segmented data
(2). Flies homozygous for perL display circadian rhythms that are
longer than normal (14), and earlier papers have reported that
perL confers longer periods on the interpulse-interval rhythm (9–
12). Kyriacou et al. (16) report a difference in the mean song
period between Canton-S and perL with the manually annotated

data, but not with the automatically segmented data, suggesting
that song cycles exist and display genotype-specific frequencies
and that the automatically segmented data are biased against
detecting the song rhythm.
Kyriacou et al. (16) used several methods to measure peri-

odicity in the original time series, which we discuss in more detail
in the next paragraph. For ≈85% of these songs, these methods
do not yield statistically significant signals in the frequency range
of 20–150 s. Because most songs do not yield statistically sig-
nificant peaks, Kyriacou et al. (16) identified the peak with
maximum power in the range of 20–150 s for each song and
compared these values between genotypes. This is an un-
orthodox approach to data analysis. It is equivalent to sampling
outliers from a distribution of random noise and then performing
further statistics with these data. Nonetheless, Kyriacou et al.
(16) detected genotype-specific song rhythms using this method
and so, below, we accept this premise and investigate whether
there is statistical support for genotype-specific rhythms in the
data. We start by examining whether there is evidence for
rhythms in individual songs.
The general model proposed for these song rhythms is that the

interpulse interval varies, on average, with a regular periodicity (9).
Therefore, it should be possible to detect this rhythmicity with ap-
propriate methods of periodogram analysis. We have previously
used Lomb–Scargle periodogram analysis (18–20) because this
method does not require evenly spaced samples and Kyriacou et al.
(16) also adopted this method. For example, the Lomb–Scargle
periodogram of the time series in Fig. 1B is shown in Fig. 1C. In this
case, despite the obvious variation in interpulse-interval values ob-
served in Fig. 1B, there is no significant periodicity between 20 and
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Fig. 1. Genotype-specific periodicity cannot be detected in Drosophila courtship song. (A) Drosophila males produce courtship song, composed of pulses
(red) and sines (blue), by extending and vibrating a wing. The interpulse interval is the time between consecutive pulses within a single train of pulses. (B) The
average interpulse interval varies over time. (Purple line is the running mean with sliding window of 200 samples.) (C) Lomb–Scargle periodogram analysis of
the interpulse-interval data from B plotted for the range of 20–150 s. None of the peaks are significant at P < 0.05. (D) Comparison of the peak power
between 20 and 150 s from the Lomb–Scargle periodograms for the song data for the genotypes periodL (perL) and Canton-S (CS) manually annotated by
Kyriacou et al. (16). Red points and lines represent mean ± 1 SD for each genotype. (Right-tailed t test P = 0.06. Rank sum P = 0.10.) (E) P values for period
windows with different lower and upper bounds. (F) False discovery rate q values for the windows shown in E. (G) Fraction of ranges with significant
comparisons (p or q < 0.05) for either the test of Canton-S less than periodL or periodL less than Canton-S. (H–K) Same as D–G for newly collected song data
from the same genotypes annotated using FlySongSegmenter. (H) Right-tailed t test P = 0.06; rank sum P = 0.45.
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150 s. Kyriacou et al. (16) also used Cosinor (21) and CLEAN (22)
for periodogram analysis. CLEAN does not produce a significance
value for periodogram peaks, so it is difficult to interpret. We find
that Cosinor exhibits a high false-positive rate (SI Appendix, Fig. S1)
and should be avoided for this type of analysis.
Kyriacou et al. (16) state that wild-type D. melanogaster songs

exhibit periodicity between 20 and 150 s. Previously, they re-
ported that rhythms occurred with 50–60 s periodicity (9). In-
creasing the width of the periodicity window from 50–60 s to
20–150 s increases the probability of detecting significant pe-
riods, but, even given this wide frequency range, we observed
that only 4 of the 25 manually annotated Canton-S songs and 3 of
the 25 automatically segmented songs contained periodogram
peaks that reached a significance level of P < 0.05. (When we
binned data in 10-s bins, these values declined to 0 of 25 manu-
ally annotated and 1 of 25 automatically segmented songs.) These
significant peaks are not localized to any particular narrow fre-
quency range (SI Appendix, Figs. S1 and S5).
One reason to study nonsignificant peaks would be if periodicity

is weak and not detected reliably by periodogram analysis. This
seems unlikely, since simulated song rhythms can be detected with
high confidence (refs. 1 and 2 and see below). Nonetheless, if
periodogram analysis is underpowered, then we expect to observe
that the major peak in most songs should display nearly significant
periodicity. In fact, we observe that 72% of P values are greater than
0.2 (SI Appendix, Fig. S2). There is therefore no evidence that songs
contain weak periodicity.
An alternative possible reason to include nonsignificant perio-

dogram peaks in downstream analysis is that the signal to noise of
the periodicity is extremely low. An analog in neuroscience is that
neural signals sometimes cannot be detected with high signal to
noise and that only by averaging over many trials of a stimulus
presentation can a neural response be detected robustly. We
therefore examined the power distribution averaged over all of the
results for each genotype. These plots are essentially flat, suggesting
that there is no signal hidden in the fluctuations of individual
periodograms (SI Appendix, Fig. S3).
Given these observations, further analysis of these data seems

unwarranted. However, Kyriacou et al. (16) compared the
maximum periodogram peaks between 20 and 150 s for the
Canton-S and perL recordings and found that the manually an-
notated data showed a statistically significant difference in the
mean period, although the automatically segmented data did not
(figure 3D of Kyriacou et al.; ref. 16). This is the key result of
their paper. We therefore attempted to replicate this observa-
tion. For the manually annotated data from each song, we
identified the peak in the periodogram of maximum power
falling between a period of 20 and 150 s. In contrast to their
published results, we found that the average of the periods with
maximum power (most of which were not significant) was not
significantly different at P < 0.05 between the genotypes Canton-S
and perL (Fig. 1D). We have no explanation for this discrepancy
between our statistical analysis and theirs.
Because there is no biological or quantitative justification for

the particular frequency ranges examined in any study, we
wondered whether the results were sensitive to the frequency
range examined. We explored a wide range of possible frequency
ranges and found that the test statistic was sensitive to the pre-
cise frequency range selected (Fig. 1E). Most frequency windows
do not generate a statistically significant difference between the
genotypes (Fig. 1 E and G), and false discovery rate correction
for multiple testing (23, 24) yields no frequency ranges with
significant results (Fig. 1 F and G).
Thus, there is no support for the specific results reported by

Kyriacou et al. (16) and there is no statistical support for de-
fining song interpulse-interval cycle periods as occurring within
any particular window. Most importantly, our analysis indicates
that genotype-specific analysis of nonsignificant periodogram

peaks has no justification. It is difficult to reconstruct precisely
what steps in the analysis led previous reports to identify statis-
tically significant genotype-specific differences, but it is possible
that previous studies may have serendipitously selected fre-
quency ranges that yielded significant results and/or did not
properly control for multiple testing.

Newly Collected Data Provide No Evidence for Genotype Specific
Song Periodicities. Although we could not reproduce results
reported by Kyriacou et al. (16), we decided to take their ob-
servation at face value as a preliminary result and test directly
whether genotype specific song rhythms could be detected in an
expanded dataset. We recorded song from 33 Canton-S males
and 34 periodL males. We identified the strongest periodogram
peak in the frequency range of 20–150 s for each song and found
no significant difference between these genotypes (Fig. 1H). We
then compared test statistics across a wide set of frequency
ranges, as described above. We identified some frequency ranges
that yielded significant results in the predicted direction (Fig. 1I),
with periodL rhythms slower than Canton-S rhythms, but for
three reasons we believe these results are spurious. First, and
most importantly, none of these ranges are significant after false
discovery rate correction (Fig. 1J). Second, multiple frequency
ranges support the opposite conclusion, that Canton-S rhythms
are slower than periodL rhythms (Fig. 1K). Third, the frequency
ranges yielding significant comparisons only partially overlap
with the ranges found for the original dataset (cf. Fig. 1 E and I).
In conclusion, there is not only no evidence that song rhythms
exist, there is also no evidence that reported genotype-specific
differences in a song rhythm exist.
Putative song cycles cannot be identified in most automatically

segmented song (2) and, as we showed above, in most manually
annotated song. In addition, when statistically significant periodicity
is detected, the frequencies of this periodicity do not cluster in a
specific frequency range, but instead are spread randomly across the
entire frequency range examined (SI Appendix, Fig. S5; figure 4 of
Stern; ref. 2). Finally, no genotype comparisons are significant after
correcting for multiple comparisons (Fig. 1). All together, these
results imply that the few statistically significant periodicities that
can be found do not carry biological significance.

No Evidence That Low-Intensity Courtship Provided Insufficient Data
to Detect Song Rhythms. Although we found no statistical evi-
dence for the existence of song rhythms or of genotype-specific
rhythms, we feel it is important to rebut several other statements
made by Kyriacou et al. (16). They state that rhythms can be
detected only in songs produced by vigorously singing males and
write: “sporadic songs could not possibly provide any test for
song cycles.” It is not clear if they mean that rhythms can be
detected only in songs with many pulses or that only flies that
sing songs with many pulses (“vigorous singers”) produce
rhythms. Kyriacou et al. (16) manually annotated songs from
flies that they categorized as vigorous, and we showed above that
significant periodicity can be found in only a minority of these
songs and that these significant values are not localized to a
particular frequency range (SI Appendix, Figs. S1D and S5A).
Therefore, it is unlikely that only flies that sing songs with many
pulses produce periodicity. We therefore performed simulations
to determine whether rhythms can be detected only in songs with
many pulses.
We previously investigated songs from 45-min courtship record-

ings that contained at least 1,000 interpulse-interval measurements
(2). Kyriacou et al. (16) argued that more than 180 interpulse-
interval measurements per minute (or ≈5,000 events in a 45-min
recording) should be identified to allow identification of song
rhythms. To examine this claim, we performed a statistical power
analysis using songs with variable numbers of interpulse-interval
measurements, where statistical power corresponds to the
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proportion of times periodicity is detected in songs where
periodicity has been artificially imposed on song data (Fig. 2).
We started with six 45-min recordings of Canton-S from Stern
(2) that contained more than 10,000 interpulse-interval mea-
surements. None of these six songs yielded statistically sig-
nificant power in the frequency range between 50 and 60 s (the
range originally defined to contain rhythms; ref. 9) and one song
produced a marginally significant peak at 31.7 s (P = 0.04), which
falls between 20 and 150 s (the range used by Kyriacou et al.; ref.
16). Fig. 2 D and E illustrate the interpulse-interval data and
periodogram for one of these songs. Therefore, these songs do not
contain strong periodicity in the predicted range and can serve as a
template to examine the power of Lomb–Scargle periodogram
analysis to detect simulated rhythms imposed on these data.
The initial reports of periodic cycles in the interpulse-interval

reported rhythms with a mean period of 55 s and an amplitude of
≈2 ms (9). Therefore, we imposed a 55-s rhythm with an amplitude
of 2 ms on the six songs containing more than 10,000 interpulse-
interval measurements (Fig. 2 A–C). We detected the simulated 55-s
rhythm in all six songs with P values <10e-74 (example shown in
Fig. 2 F and G). We then randomly removed data points from the
songs iteratively and calculated the fraction of times we could detect
the simulated rhythm with P < 0.05. We removed data randomly
from the dataset to simulate the effect of failing to detect individual
events in the song, and we also removed chunks of data (in 10-s
bins) to simulate large gaps between song bursts, such as might be
generated during low-intensity courtship. We found that in both
scenarios we could randomly remove at least 90% of the data and
still detect simulated rhythms at least 80% of the time (example
shown in Fig. 2 H and I; summary statistics shown in Fig. 2J and SI
Appendix, Fig. S4A). That is, as long as songs contained at least

1,000 interpulse-interval measurements, Lomb–Scargle periodo-
gram analysis detected simulated rhythms with power greater than
0.8. Similar results were found when we analyzed only the first
400 s of songs (SI Appendix, Fig. S4 C and D). Furthermore, pe-
riodicity could be detected with power greater than 0.8 when the
amplitude of simulated periodicity was greater than at least 1 ms
(SI Appendix, Fig. 4B). These results were robust to noise in the
original periodicity. Song with a signal-to-noise ratio of as low as
0.25 could be detected with power >0.7 with sample sizes of at
least 1,000 interpulse-interval measurements (Fig. 2K). Similarly,
periodicity could be detected reliably when we simulated a non-
sinusoidal rhythm (SI Appendix, Fig. S4E) and when periodicity
was imposed for only a fraction of the total song (SI Appendix).
Thus, Lomb–Scargle periodogram analysis is a sensitive method
for detecting simulated periodicity, even in the presence of noise
or discontinuities in the waveform.
Songs containing at least 1,000 interpulse intervals provide

sufficient data to identify putative song cycles. In fact, we find
that songs can be deeply corrupted by the absence of large seg-
ments of song and simulated periodicity can still be detected.

No Evidence That the Automated Fly Song Segmenter Biased the
Results. Kyriacou et al. (16) expressed concern that our auto-
mated fly song segmenter displayed a low true positive rate (the
segmenter failed to detect ≈50% of the pulses identified through
manual annotation) and produced some false-positive calls
(≈4% of events scored as pulses by the automated segmenter
appear to be noise). They suggest that these incorrect pulse event
assignments could bias estimation of the mean interpulse interval
and, therefore, decrease the signal to noise of the periodic cycle,
making it difficult to detect a periodic signal. In principle, a large
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Fig. 2. Simulations to explore power to detect rhythms, should they exist. (A–C) Example of how a periodic cycle was added to raw interpulse-interval (IPI)
data. Purple line in A illustrates the running mean of the raw data. Blue line in B shows a periodic rhythm with an amplitude of 2 ms and a period of 55 s.
Original data with simulated periodicity is shown in C. (D) One example of 45 min of interpulse-interval data. Purple line shows running mean. (E) Lomb–
Scargle periodogram of data in D does not detect periodicity. (F) Data from Dwith a 55-s periodicity imposed. (G) Lomb–Scargle periodogram of data in F now
reveals a highly significant peak at 55 s, consistent with the simulated Kyriacou–Hall (KH) periodicity. (H) Random removal of 95% of the interpulse-interval
data from F. (I) Lomb–Scargle periodogram of the data in H detects significant periodicity. (J) Power analysis of six songs (each song a different color) containing
more than 10,000 interpulse-interval events after 55-s periodicity was added and individual interpulse-interval events were removed randomly. Power equals the
fraction of times out of 100 that a song contained a rhythm with significant periodicity between 50 and 60 s at P < 0.05. (K) Power to detect simulated noisy
periodicity versus number of IPIs remaining after random removal of IPIs. Means of simulations for six songs containing more than 10,000 interpulse-interval
measurements are shown. Examples of simulated noisy rhythms are shown to the Right. Colorbar shows power to detect simulated rhythm.
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sample of incorrect calls could bias results, so we investigated
whether this was the case for our prior analyses. We used Kyriacou
et al.’s (16) manually annotated dataset to investigate the potential
for bias and to evaluate performance of the automated segmenter.
When a single pulse event is not detected, the interpulse in-

terval is then calculated as the sum of the two neighboring real
intervals. On average, this is approximately double the average
interpulse interval. The average interpulse interval for the
Canton-S recordings reported in Stern (2) is ≈35 ms with a SD of
≈7 ms. Therefore, skipping a single pulse event is expected to
result in interpulse-interval measurements of ≈70 ms, but with
considerable variance. Following Kyriacou and Hall (15) and
Stern (2), we used a heuristic threshold of 65 ms to reduce the
number of spurious interpulse-interval values. Therefore, in the
specific case when a single pulse in a train is missed, approxi-
mately one-third of the incorrectly scored doublet interpulse-
interval measurements would be shorter than 65 ms and are
expected to contaminate the original dataset.
However, this scenario applies only when one undetected pulse is

flanked by two pulses that are detected. Skipping more than one
pulse would always result in interpulse-interval measurements that
are excluded by the 65-ms threshold. We found, however, that only
9% of the pulses missed by automated segmentation were single-
tons (SI Appendix, Fig. S6A). These incorrect interpulse intervals
contribute to a slight excess of interpulse intervals with high values
(SI Appendix, Fig. S6B). Lowering the interpulse-interval threshold
would, therefore, remove most or all spurious interpulse intervals.
Since our power analysis, discussed above, revealed that periodo-
gram analysis was robust to random removal of interpulse-interval
events, as long as songs still contained at least 1,000 values, loss of a
small number of interpulse intervals is not expected to hamper
detection of rhythms. After reducing the interpulse-interval thresh-
old to 55 ms, we still found no compelling evidence for significant
periodicity in the original data (SI Appendix, Fig. S7). Therefore, we
explored the effect of reducing the interpulse-interval cutoff even
further. In this case, we used all 68 Canton-S songs from Stern (2)
and retained for analysis only those songs that contained at least
1,000 interpulse-interval measurements after imposing the new
interpulse-interval threshold. We explored a range of cutoff values
from 25 to 65 ms. We found that we could detect the simulated
rhythm in most songs with at least 1,000 interpulse-interval mea-
surements remaining after thresholding, even when the threshold
was as low as 25 ms (Fig. 3). Therefore, we can find no evidence
that pulses missed by the automated song segmenter or the specific
interpulse-interval threshold used in Stern (2) prevented detection
of song rhythms.
Although detection of putative song rhythms is robust to

dropped pulses in songs that retain at least ≈1,000 interpulse
intervals, it is worth reviewing briefly why the segmenter failed to
detect certain pulses in recordings reported in Stern (2). The first
step of song segmentation involves detection of pulse-like signals
and sine-like signals (1). In subsequent steps, the segmenter fil-
ters out many kinds of sounds that were originally classified as
song pulses. Both the initial detection of pulses and subsequent
filtering steps are sensitive to multiple parameters. These pa-
rameters are specified before segmentation and can be modified
to enhance performance of the segmenter for different record-
ings. We identified two primary causes for missed pulses. First,
Stern (2) recorded song in larger chambers than those used
previously with these microphones (1), to match the chamber
size used by Kyriacou and Hall (9). This larger chamber with one
microphone had reduced sensitivity compared with the original
smaller chamber. The segmenter thus tended to miss pulses of
lower amplitude, which are hard to automatically differentiate
from noise, and this explains ≈35% of the missed pulses (SI
Appendix, Fig. S8 A and C).
The second major cause of missed pulses is that Drosophila

males produce pulses with a range of carrier frequencies (tones).

The higher frequency pulses tend to resemble other nonsong
noises, like grooming, and a user can set parameters in the
segmenter to attempt to exclude these nonsong noises based on
the carrier frequency of the event. Stern (2) used parameters to
minimize the false-positive rate, including a relatively low carrier
frequency cutoff for pulses. The lower pulse frequency threshold
used by Stern (2) explains ≈42% of the missed pulses (SI Ap-
pendix, Fig. S8 B and D). Using the same software with different
parameters (from Coen et al.; ref. 4) recovers many of these
high-frequency pulses without substantially increasing the false-
positive rate (SI Appendix, Fig. S8 C–F).
Above, we showed that including more pulse events, by manual

annotation, did not increase the probability of detecting song
rhythms. Therefore, there is no evidence that the data resulting
from the song segmenter parameters used in Stern (2) generated
a dataset that was biased against detection of song rhythms.
While the song segmenter does not detect all pulse events that
can be detected by manual annotation, the segmenter does
provide datasets that are several orders of magnitude larger than
those that can be generated by manual annotation, which has
allowed discovery of multiple new phenomena related to Dro-
sophila courtship song (3–7). In addition, the sensitivity of the
song segmenter can be improved with optimization of initial
parameters, as expected of any segmentation algorithm.

Discussion
We cannot detect a periodic cycling of the interpulse interval in
Drosophila courtship song even in the songs manually annotated

A

C

E

D

B

E

Fig. 3. The specific interpulse-interval threshold does not influence the
statistical power to detect putative song rhythms. (A) Example of one orig-
inal song with 55-s periodicity artificially imposed on the original interpulse-
interval data. (B) Lomb–Scargle periodogram of data in A, revealing strong
signal at 55 s. (C) Same simulated data as in A with all interpulse-interval
values greater than 25 s removed. (D) Lomb–Scargle periodogram reveals
strong signal of the simulated periodicity at 55 s, even though the data were
thresholded at 25 s. (E) Power to detect simulated periodicity versus
interpulse-interval threshold for songs retaining at least 1,000 interpulse-
interval values after thresholding.
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by Kyriacou et al. (16) and used as evidence for periodicity in
their paper. Although it is impossible to prove a negative, our
results agree with previous analyses that have concluded that
there is no statistical evidence that these rhythms exist (1, 2). In
particular, by exploring some of the relevant parameter space
with statistical tests on the song that was manually annotated by
Kyriacou et al. (16), we find that subsets of parameters some-
times produce P values lower than 0.05, but that (i) few regions
of parameter space generate “significant” results, (ii) these sig-
nificant regions are scattered apparently randomly in parameter
space, and (iii) none of these significant results survive multiple
test correction (Fig. 1).
Previously, we offered one explanation for how apparent song

rhythms may have been detected. We found that binning data
from short songs confined the periodogram peaks with maximum
power close to the range reported as the song cycle (2). While
few of these peaks reached statistical significance, previous au-
thors have accepted these peaks as “signal” and performed sta-
tistical analyses to compare the peaks between genotypes. All
statistically significant results from earlier papers were derived
mainly from nonsignificant peaks in periodogram analysis and
from relatively small sample sizes (usually fewer than 10 flies of
each genotype), so it is questionable whether these derivative
statistics are valid. Genotype-specific periodicities reported in
earlier papers may have resulted, by chance, from studies of a
small number of short songs that fortuitously led to occasional
apparent replication of the original observations.
There may be a more prosaic explanation for the initial dis-

covery of song cycles. Every fly produces highly variable interpulse
intervals. In addition, a running average of these data reveals that
the average interpulse-interval cycles up and down (Fig. 1B),
similar to the temporally binned data first reported by Kyriacou
and Hall (9). There is no debate about this observation. The claim
in dispute is that the average interpulse-interval cycles regularly.
We can find no evidence for this claim. It is easy to imagine,
however, that visual examination of short recordings of song would
make it appear as if the mean interpulse-interval cycled regularly.

The extraordinary within-fly variation in the interpulse interval
and in the mean interpulse interval may result from multiple
causes, including the possibility that male flies respond to ever-
changing cues during courtship and modulate their interpulse
interval to optimize their chances of mating. Individual Dro-
sophila males modulate specific aspects of their courtship
song based on their own patterns of locomotion and in re-
sponse to feedback from females, including the transition
between sine and pulse song (4) and the amplitude of pulse
song (3). There is additional evidence that males modulate the
carrier frequency of sine song (1). We hypothesize that male
flies also modulate their interpulse interval in response to
specific internal or external cues.
We can find no statistical evidence for periodicity of the

interpulse interval in individual courtship songs and no evidence
that comparisons of the strongest periodogram peaks from each
song identify genotype-specific rhythms. These results hold both
for the songs manually annotated by Kyriacou et al. (16) and for
two independent large datasets automatically annotated with
FlySongSegmenter using optimized parameters. At this time,
a conservative assessment of the problem is that Drosophila
courtship song rhythms and genotype-specific effects on these
rhythms cannot be replicated.

Methods
Computer code for all analyses described in this paper is available at https://
github.com/murthylab/noIPIcycles. Code for the version of FlySongSeg-
menter used in Cohen et al. (5) is available at https://github.com/murthylab/
songSegmenter. The raw and segmented song data for the new song re-
cordings are available at https://www.janelia.org/lab/stern-lab/tools-reagents-
data. Further methods can be found in SI Appendix.
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Supplementary Information Appendix 

 

The first section of this supplementary information appendix contains supplementary figures that 

are cited in the main paper. In addition, at the end of this appendix, we address several issues 

raised in Kyriacou et al. (1) that we did not have space to address in the main manuscript.  
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Figure S1. Cosinor analysis of IPI cycles produces many false positives. (A,B) Amplitude of cosinor fits (A) and 
Lomb-Scargle spectral power (B) for periods in the range 20 to 150 seconds (log2 scale). Spectra for original 
IPI data (upper panel) and shuffled IPI data (lower panel) are similar. Grey lines show spectra for individual 
flies, blue/orange lines show population averages for original and shuffled data, respectively. (C,D) 
Frequencies of significant peaks in the cosinor (C) and Lomb-Scargle (D) spectra for original (upper panel, 
blue dots) and shuffled data (lower panel, orange dots). One line per fly. (E) Distribution of significant 
periods over all flies shows an enrichment of short periods (20-30ms). (F) Same distribution as in E but with 
logarithmic y-scale to highlight counts for high periods. There is no enrichment for longer periods, suggest-
ing that they are false positives.
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Figure S2. Distribution of p-values for the Lomb-Scargle periodogram peaks with maximum 
power between 20 and 150 sec for the Canton-S song data manually annotated by Kyriacou et al 
(3). Four of the peaks exhibit p-values < 0.05 and there is not an obvious excess of low p-values.
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ed by Kyriacou et al. (3). (B) Automatically segmented data from Stern (3). (C)  Automatically segment-
ed data using segmentation parameters from Coen et al. (5). Individual recordings are shown in grey 
and average over all recordings is shown in black.
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Figure S4. Statistical power analysis under multiple scenarios. (A) Power analysis after 
ten-second bins of inter-pulse interval data were removed randomly. The plots show the 
proportion of times out of 100 that periodicity was found between 50-60 sec with P < 0.05 
for each of six songs containing more than 10,000 inter-pulse interval events.  (B) Depen-
dence of power to detect simulated periodicity on periodicity amplitude. Simulated period-
icity of 55 sec with amplitude between 0 and 2 msec was imposed on sixty-eight Canton-S 
songs containing at least 1000 inter-pulse interval measurements. Power equals the 
fraction of songs that displayed power between 50 and 60 sec at P < 0.05. (C, D) Simulated 
periodicity was added to six songs containing at least 10,000 inter-pulse interval (IPI) 
events in 45 minutes and then only the first 400 seconds of the song were analyzed. One 
hundred times, inter-pulse interval data were dropped either randomly (C) or 10 sec bins 
were dropped randomly (D) and Lomb-Scargle periodogram analysis was performed. (E) 
Power to detect a sawtooth rhythm. Sawtooth periodicity was added to six songs contain-
ing at least 10,000 inter-pulse interval (IPI) events in 45 minutes. 
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Figure S8. Modification of initialization parameters of FlySongSegmenter influences its performance in detecting pulses. (A, 
B) Distribution of pulse amplitudes (A) and carrier frequencies (B) for the pulses manually annotated in Kyriacou et al. (3). (C, 
D) Probability of detecting manually annotated pulses by the automated song segmenter using either the initialization 
parameters from Stern (2) or Coen et al. (5) versus pulse amplitude (C) or pulse carrier frequency (D). (E, F) True (E) and 
false (F) positive rate of pulse detection using parameters from Stern (2) and Coen et al. (5) for the pulses manually annotat-
ed in Kyriacou et al. (3).
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Inter-pulse interval cut-off and temperature control 

 

 

Under the heading “Problem 2: Inappropriate upper IPI cut-offs and poor temperature control,” 

Kyriacou et al. (1) state that Stern (2) used an inappropriate upper inter-pulse interval cutoff for 

some of the songs and that temperature was not controlled during experiments. We address each 

concern in turn. 

 

Inter-pulse interval cut-off: Kyriacou et al (1, 3) recommended that the IPI cut-off should scale 

with the mean inter-pulse interval for a genotype. They did not indicate precisely how the cut-off 

should scale with the mean. In their table S1, they indicated a “more appropriate cutoff” for each 

genotype without a quantitative description of how this cutoff should be calculated. The mean 

inter-pulse intervals and standard deviations calculated from all songs with > 1000 IPIs are 

shown below along with their recommended upper cut-off. 

 

 per01 perL perS D. 

simulans 

CantonS CantonS 

Manual 

perL 

Manual 

Mean IPI 41.0 37.6 40.9 43.1 34.4 33.4 37.5 

Recommended 

IPI cut-off 

85 75 85 95 65 65 75 

Std Dev IPI 8.09 5.99 6.72 9.13 7.46 7.11 6.59 

 

The mean inter-pulse interval varies by less than 10 msec, but the recommended cut-offs vary by 

30 msec. The slope of the regression of mean inter-pulse interval and the recommended cut-off is 

3.1 (y = 3.1x – 40). In essence, Kyriacou et al. assume that the standard deviation in inter-pulse 

interval increases considerably faster than the mean inter-pulse interval (plot below left). We 

find, in contrast, that the standard deviation in inter-pulse interval is relatively constant across 

genotypes (y = 0.14x + 1.8 for automated data) (plot below right). Changing the cutoff by the 

change in the mean, rather than 3X faster than the mean, is justified by these observations. 
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Even more importantly, however, in the main manuscript we report simulations where we 

progressively reduced the IPI cutoff for song with simulated rhythms. We find that the upper cut-

off can be reduced from 65 ms to at least as low as 25 ms and simulated periodicity can still be 

detected as long as the song retains at least 1000 inter-pulse interval events. It is unlikely, 

therefore, that any particular IPI cutoff has any influence on the ability to detect song periodicity. 

 

Temperature: Environmental temperature is known to influence the inter-pulse interval of 

courtship songs. There is no report that temperature can influence the proposed rhythm in the 

inter-pulse interval, but Kyriacou et al (1) claimed that the experiments reported in Stern (2) had 

poor temperature control and that this might cause problems with analysis. 

 

We re-examined the data and found that, indeed, average temperature did vary between 

recording sessions with a range of approximately 4.3°C. However, within each 45-minute 

recording session, temperature varied on average with a range of 0.52°C. On average, 

temperatures in the chambers increased slightly over the course of the recording session, likely 

due to the heat produced by the electronics. In the plot below, we show the temperature for each 

experiment shown in a different color over each approximately 45-minute recording. 
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While these slight differences in temperature over the course of each experiment are expected to 

have a subtle effect on the inter-pulse interval, it is not clear that song periodicity should 

disappear as a result of these small temperature changes. One might imagine that the periodicity 

might differ at different temperatures, but the essential point of Stern (2), emphasized by results 

in this paper, is that periodicity itself could not be detected. 

 

Kyriacou et al also stated that differences in mean IPI should be incorporated into changes in the 

IPI cutoff. Different experiments were recorded at temperatures that varied by at most ~4°C, 

although most experiments were recorded at temperatures of between ~25°C and ~26°C. 

Variation of ~4°C is expected to alter mean IPI by only ~5 msec (4). So, this might justify a 

change in the IPI cutoff of up to a maximum of 5 msec, which is unlikely to alter any of the 

statistics substantially. In addition, we showed in the main manuscript that changing the IPI 

cutoff by up to 40 msec (from 65 msec to 25 msec) has little effect on the ability to detect 

simulated rhythms, so a small change in the IPI cutoff is unlikely to resolve the question of 

whether IPI periodicity exists. 
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Length of courtship 

 

Under the heading “Problem 3: Unrealistic length of courtship,” Kyriacou et al. (1) state that 

“courtship interactions under natural conditions are brief,” lasting less than 30 sec and therefore 

question the use of 45 minute recordings of song. (Of course, if courtship really lasted less than 

30 sec, then 50-60 sec periodicity could not be detected.) The key reference the authors cite for 

natural courtships (5) indeed reported that the majority of courtship interactions lasted less than 

30 seconds, however, none of the 153 courtship interactions observed in that study ended in 

copulation. It is possible that most or all of the females studied were not virgin and were 

unwilling to participate in courtship. Therefore, these data are not relevant to the question of how 

long courtship between a male and virgin female persists in nature. 

 

Kyriacou et al. (1) further question the use of 45 minute recordings because circadian rhythms 

can dampen quickly, citing (6). Reference (6) reports on dampening of circadian rhythms during 

real-time luminescence recording from cultured explanted rat superchiasmatic loci over the 

course of approximately 10 days. One can imagine multiple reasons why cultured cells would 

display a dampened rhythm over 10 days. It is not clear how this is relevant to a presumptive 

song rhythm over a roughly 45-minute time span. 

 

Nonetheless, we decided to investigate this issue more closely. First, we examined the power to 

detect periodicity in songs if the periodicity was present for only the first N minutes of the song. 

Periodicity was imposed on the first N minutes of 45 minute recordings for 68 Canton-S songs 

that contained more than 1000 inter-pulse interval measurements and the average probability of 

detecting this periodicity with LS periodogram analysis is reported as power in the plot below. 

We retained power greater than 0.8 as long as periodicity persisted for at least the first 16 

minutes. In addition, the probability of detecting periodicity rose above random (P = 0.05) with 

as little as three minutes of periodicity. Thus, it is extremely unlikely that we would have failed 

to have detected periodicity in the song recordings as long as periodicity persisted for more than 

a few minutes. 
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Furthermore, if we perform power analysis only on songs 400 sec long, then we retained power 

of > 0.8 as long as these short songs contained at least 1000 inter-pulse interval events (Fig. 

S4a), even when pulses were dropped in 10-sec bins (Fig. S4b). Thus, there is no evidence that 

the length of courtship recordings generated data that are biased against detecting courtship 

rhythms. 

 

Reanalysis of Stern’s primary matlab song records 

 

Kyriacou et al. (1) observed an apparent error (blue arrow below) in the calling of an inter-pulse 

interval in Figure 1b of Stern (2) and report this in Fig S2 of their paper. Figure 1b in Stern (2), 

reproduced below on left, was derived from experiment PS_20130625111709_ch3, sample 

points approximately 1162.3 sec to 1163.3 sec. We have re-examined the original data and find 

that the apparently missing inter-pulse interval is in fact found in the csv file that was provided 

with the original manuscript, but was inadvertently deleted during construction of the figure. We 

have replotted the data below on the right. 
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