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Introduction

Tuned filters play a vital role in communication: in order 
to accurately receive a signal through a noisy channel, 
the receiving side benefits from narrowing and center-
ing perception to the spectral characteristics of the signal. 
This also applies to neuronal communication (Borst and 
Theunissen 1999). Obvious examples are linked to sensory 
systems, where highly convergent signal pathways reduce 
the broad information from the outside world to a man-
ageable stream of information (Barlow 1961). Here, reso-
nances equip neurons with the ability to resolve and effi-
ciently encode spectral components of a stimulus—take, 
for instance, the Gabor filters proposed for the mammalian 
visual (Hubel and Wiesel 1962; Jones and Palmer 1987) 
and auditory system (Smith and Lewicki 2006), or the elec-
trical tuning of hair cells in lower vertebrates (Fettiplace 
1987).

Neuronal filtering plays a decisive role in specialized 
sensory systems. For sensory systems that are dedicated 
to detecting a narrow range of stereotyped signals, one 
can—on an evolutionary timescale—expect filtering to be 
optimized for an efficient and reliable processing of signals 
(Cariani 2001). The spectral tuning of neurons poses an 
obvious target for selection. In particular, when the size of 
neuronal circuits is constrained (like in the case of insects) 
and the behaviorally most relevant signals are rhythmic, the 
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implementation of bandpass-like filter properties may pose 
an attractive coding strategy.

Here, we investigate tuning properties of neurons in the 
size-constrained peripheral auditory network of crickets, 
aiming to understand whether the frequency dependence 
of signal processing in this small entrance circuit is already 
tailored to the rhythmic structure of vital communication 
signals. To this end, we focus on “firing-rate resonances”, 
that is, bandpass-like frequency dependences of neuronal 
firing-rate transfer functions. Specifically, such resonances 
are reflected in largest firing-rate responses to inputs in a 
selected frequency band. Beyond the specific physiology 
and network architecture of the cricket’s peripheral audi-
tory pathway, we examine three conceptually different 
mathematical model types that can describe the observed 
firing-rate resonances. We seek to understand to what 
extent these different mechanisms can capture general, 
quantitative aspects of the recorded firing-rate resonances.

Female crickets recognize and selectively track the 
rhythmic calling songs of conspecific males (Bennet-Clark 
1989) in a behavior known as phonotaxis (Popov et al. 
1976). Due to the behavioral importance of these songs 
and their rhythmicity, an early specialization of peripheral 
neurons onto relevant frequency ranges may be an effi-
cient computational strategy (Tunstall and Pollack 2005). 
In the cricket’s brain, several higher-order neurons exhibit 
their highest firing rates in response to acoustic stimuli that 
match the temporal features of the cricket’s song (Schild-
berger 1984; Kostarakos and Hedwig 2012). The sharp-
ness of this modulation tuning appears to increase from 
neuron to neuron in sequence of processing (Schildberger 
1984; Kostarakos and Hedwig 2012), hinting towards a 
distributed, cumulative filtering. The underlying filtering 
mechanisms, however, are still debated: concepts include 
template matching (Hoy 1978; Hennig 2003), delay lines 
(Reiss 1962; Weber and Thorson 1989; Kostarakos and 
Hedwig 2015), neural resonance (Eilts-Grimm and Wiese 
1984; Bush and Schul 2006; Webb et al. 2007) and band-
pass formation through interaction of low- and high-pass 
neurons (Schildberger 1984).

We utilized a novel, efficient stimulation paradigm to 
demonstrate that—even in the auditory periphery—some of 
the examined neurons acted as tuned filters, yielding high-
est firing-rates in response to the modulation frequencies 
characteristic of the male crickets’ mating song. Across cell 
types, we find that firing-rate resonances are expressed with 
different strengths and frequency preferences, consistent 
with previous studies involving other species and measures 
(Nabatiyan et al. 2003; Marsat and Pollack 2004; Tunstall 
and Pollack 2005). Guided by the experimentally recorded 
firing-rate resonance in one of the cricket neuron types, we 
proceed to a more general level to compare how different, 
previously described mechanisms in single cells or small 

circuits can quantitatively account for the observed firing-
rate resonances. The computational approach comprises 
(1) a model with subthreshold resonance of the membrane 
impedance in a single cell, (2) a model with spike-triggered 
adaptation in a single cell, as well as (3) small network 
models with delayed inhibition or specialized cut-off fre-
quencies. Despite differences in the underlying compo-
nents, all mechanisms share the principle of negative feed-
back and we find that they capture the firing-rate resonance 
well. We conclude that these biophysical and network 
mechanisms are interesting candidates for firing-rate reso-
nances in invertebrate systems and may be useful for the 
description of firing-rate resonances beyond the specifics of 
the cricket system analyzed in this study.

Material and methods

Experiment

Preparation

Laboratory-reared female crickets of the species Gryllus 
bimaculatus were used in all experiments. After visually 
inspecting the intactness of the tympana, both meso- and 
metathoracic legs as well as the wings were removed and 
the animal was fixed ventral side up to a recording stage 
using bees wax. The front legs were fixed in a walking 
position while care was taken not to constrict the tympana 
with wax. In order to reduce overall neuronal activity and 
body movements, both the meso- and the metathoracic 
ganglion were removed and the connectives between pro-
thoracic and suboesophageal ganglion were cut. Maxillae, 
labium and gut were removed. All cuts were sealed with a 
viscous mixture of petroleum jelly and mineral oil to pro-
vide electrical insulation and prevent the preparation from 
drying out.

Electrophysiology

Signals from AN1 and AN2 were recorded differentially 
(EXT-10C, npi electronics, Tamm, Germany) from one of 
the connectives between prothoracic and suboesophageal 
ganglion using tungsten hook electrodes, referenced to a 
silver wire in the animal’s abdomen (Hennig 1988). Sig-
nals from ON1 were recorded in separate sessions from 
the prothoracic ganglion using a 500 k� extracellular tung-
sten electrode (World Precision Instruments, Sarasota, FL, 
USA) referenced to a stabilizing metal spatula. ON1 was 
identified by its greater sensitivity, but longer response 
latency, to stimulation at 4.5 kHz compared to 16 kHz (for 
Teleogryllus oceanicus: Faulkes and Pollack 2000; Sab-
ourin et al. 2008). Voltage signals were band-pass filtered 
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between 300 and 3000 Hz (DPA-2FX, npi electronics), 
digitized at 20 kS/s (PCI-6229, National Instruments, Aus-
tin, TX, USA) and recorded to the hard disk of a desk-
top computer using custom software (LabView, National 
Instruments).

Stimulation

To efficiently sample both spike rate and spike timing 
responses across a range of frequencies, we employed 
acoustic stimuli with a swept-frequency amplitude modu-
lation (SFAM). The envelope function of SFAM stimuli 
resembled a sinusoidal wave whose instantaneous fre-
quency fAM(t) changed linearly with time:

where f0 was the initial frequency at time t = 0s, f1 was 
the target frequency at stimulus duration t1 and β was the 
sweep rate; that is, the slope of fAM(t). The amplitude of 
the envelope function followed:

We used stimuli with the parameters t1 = 10 s, f0 = 1 Hz 
and f1 = 100 Hz, which resulted in a sweep rate of 
β = 9.9 Hz/s. For AN1 and AN2 we also used addi-
tional stimuli with a shorter duration (t1 = 5 s) and fre-
quencies ranging from f0 = 0 Hz to either f1 = 50 Hz or 
f1 = 500 Hz (yielding chirp rates of β = 10 Hz/s and 
β = 100 Hz/s, respectively). To account for effects of 
adaptation, stimuli were also presented in reverse, that is, 
with falling instantaneous frequencies.

Throughout the cricket’s auditory system one can observe a 
dichotomy between pathways that are sensitive to low carrier 
frequencies and those that are sensitive to high carrier frequen-
cies (Popov et al. 1976; Boyan and Williams 1982; Schild-
berger 1984). In order to adequately stimulate both pathways, 
envelope functions were multiplied with sine carriers of either 
4.5 or 16 kHz, coinciding with the respective characteristic 
frequencies of the ascending neurons AN1 and AN2 (Fig. 1 in 
Rheinlaender et al. 1976; Fig. 2 in Schildberger 1984). Stimuli 
were computed at a resolution of 100 kHz. After digital-to-
analog conversion (PCI-6229, National Instruments), stimuli 
were adjusted to a peak intensity of 80 dB SPL (ATN-01M, 
npi electronics), amplified with a power amplifier (Raveland 
XA-600, Blaupunkt, Hildesheim, Germany) and presented 
via one of two loudspeakers mounted at a distance of 30 cm 
and an angle of 90° to either side of the animal’s longitudinal 
body axis. Stimuli were presented in randomized order with 
each stimulus being presented up to 25 times, depending on 
the state of the recording.

(1)

fAM(t) = f0 + βt,

β =
f1 − f0

t1
,

y(t) =
1

2
cos

[

2π
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f0t +
β

2
t2
)

+ π

]

+
1

2
.

Data processing

Spike detection

Spike times were extracted from the raw voltage traces by 
means of a basic threshold detection method (Benda and 
Hennig 2008). Distributions of inter spike intervals (ISIs) 
were used to assess the quality of extracted spike times. In 
three recordings within the prothoracic ganglion, low ISIs 
indicated multi-unit activity originating from the mirror-
image pair of ON1-type neurons (cf. Wohlers and Huber 
1982). In these cases we used a more advanced method 
of spike sorting based on wavelet decomposition and 
superparamagnetic clustering adapted from Quiroga et al. 
(2004), allowing for a good separation of the two cells’ 
spike shapes. All spike times were corrected for median 
first-spike latencies to 80 dB SPL pulses of the respective 
carrier frequencies. We obtained a total of 8 datasets from 
AN1, 11 from AN2 and 10 from ON1.

Modulation transfer functions

The SFAM stimulation protocol delivered a linear sweep of 
modulation frequencies, with each stimulus segment repre-
senting a defined frequency band. We exploited this prop-
erty by analyzing the experimentally obtained data with a 
sliding window approach. The procedure yielded two com-
mon measures for characterizing the relationship between 
the stimulus’ amplitude modulations and the recorded firing 
events, namely (1) the rate modulation transfer function 
(rMTF), and (2) the temporal modulation transfer func-
tion (tMTF). The two measures describe the AM frequency 
transfer on the levels of average and stimulus locked firing 
respectively (Eggermont and Wang 2011).

In order to obtain the two kinds of MTFs, we first con-
verted the recorded spike times into binary spike trains 
(waveforms at the 20 kHz sampling rate of the original 
recordings with zero representing “no spike” and one rep-
resenting “spike”). These row vectors were averaged across 
trials and multiplied by their sampling rate, essentially 
yielding the numerical representation of a highly resolved 
peristimulus time histogram (PSTH, Gerstein and Kiang 
1960) with a bin size equal to the reciprocal of the record-
ing’s sampling rate.

From these data, MTFs were obtained by means of the 
short-time Fourier transform (STFT)—a Fourier-related 
transform that captures the spectral properties of a local 
section of a signal. The discrete STFT corresponds to a 
regular discrete Fourier transform (DFT) but combines the 
sampled signal x(m) with a window function w(m):

X(n, k) =
N−1
∑

m=0

x(m)w(n− m) · e−i 2π
N
km, k ∈ Z,



1078 J Comp Physiol A (2015) 201:1075–1090

1 3

where f (m) = x(m)w(n− m) is a short-time section of sig-
nal x(m) at time n, N is the length of x(m) and k is the index 
of the DFT coefficient to be calculated.

The rate modulation transfer function (rMTF) describes 
a cell’s mean firing rate as a function of AM frequency 
(Schreiner and Langner 1988). In the frequency domain, 
the mean value of a signal is given by the spectral mag-
nitude at 0 Hz, the DC bias. The corresponding STFT at 
k = 0 reduces to a convolution of signal x and window w:

where fs is the sampling rate of the recording. Thus, in this 
case the STFT was merely used for smoothing the highly 
resolved PSTH from the previous step.

The temporal modulation transfer function (tMTF) 
characterizes a cell’s ability to synchronize its firing to the 
amplitude modulations of a stimulus (Schreiner and Lang-
ner 1988). It can be expressed both in absolute or relative 
terms (Eggermont and Wang 2011). The relative measure is 
commonly known as the vector strength (VS). Here, how-
ever, the tMTF is defined as an absolute measure of phase-
locked firing rate; that is, the magnitude of the response’s 
Fourier component at the stimulus’ instantaneous AM 
frequency:

where kAM(t) is the DFT index that corresponds to the 
stimulus envelope’s instantaneous frequency fAM(t) (see 
Eq. 1):

For both MTFs, a flat top window (Gade and Herlufsen 
1987) was used, with width σ = 1 s (for β ≤ 10 Hz/s) or 
σ = 300 ms (for β = 100 Hz/s) and 90 % overlap. Overall, 
the positions of transfer peaks were relatively independent 
of the window’s width in a range of ±50%. More narrow 
windows, however, were avoided, as they undersampled the 
neurons’ low-frequency response and led to aliasing. For 
an efficient and accurate evaluation of the individual DFT 
terms we employed the Goertzel algorithm (Goertzel 1958; 
section 3.4 in Sysel and Rajmic 2012).

The two measures correspond to cross-sections of the 
spike train’s magnitude spectrogram along the DC com-
ponent and along the stimulus envelope’s fundamental 
frequency, as illustrated in Fig. 2. While the rMTF quanti-
fies mean firing rates much like a regular PSTH, the tMTF 
represents the absolute rate contribution of spikes that are 
phase-locked to the stimulus’ instantaneous modulation 
frequency.

rMTF(t) =
∣

∣X(tfs, 0)
∣

∣,

=
N−1
∑

m=0

x(m)w(tfs − m),

tMTF(t) =
∣

∣X[tfs, kAM(t)]
∣

∣,

kAM(t) =
⌊

N ·
fAM(t)

fs

⌉

.

Detection and characterization of transfer peaks

The position and shape of transfer peaks were characterized 
across recordings. To this end, both the respective rMTF and 
tMTF were fitted with cubic smoothing splines (smoothing 
parameter p = 0.02, average R2 = 0.99), extrapolated to 
0 Hz and processed with a peak detection algorithm (Todd 
and Andrews 1999). Peaks in the smoothed transfer functions 
were included in further analyses, if they rose above adjacent 
troughs by an amplitude factor of 1.1 or higher. They were 
characterized by the peak frequency fp and the quality factor 
Q, the latter defined as the ratio between the magnitude at fp 
and the extrapolated magnitude at 0 Hz (Koch 1984; Hutch-
eon et al. 1996). For transfer functions that merely exhibit a 
lowpass dependence on modulation frequency, the peak fre-
quency fp coincides with 0 Hz and, thus, Q equals 1. Trans-
fer functions are characterized by a Q value greater 1, if they 
exhibit a peaked (i.e., resonant) dependence on modulation 
frequency. Note, that the Q value applied here differs from a 
homonymous measure for characterizing resonant systems, 
defined as the ratio of peak frequency and bandwidth (cf. 
Hennig et al. 2004).

Models

We implemented three conceptually different models that 
reproduce the observed firing-rate resonances in the protho-
racic network of the cricket. The models were not meant 
to accurately represent the cricket’s auditory physiology 
but rather served to illustrate how general cellular mecha-
nisms could lead to firing-rate resonances. For this reason, 
the number of model parameters was deliberately kept low. 
Moreover, the models are of phenomenological nature. The 
parameters hence cannot be expected to agree with detailed 
biophysical or electrophysiological parameters of the crick-
ets’ neurons in a one-to-one manner. While we tried to 
place the model parameters in a realistic order of magni-
tude (cf. van Hateren and Laughlin 1990; Borst and Haag 
1996), they do not represent a measurement-based, quan-
titative estimate of the corresponding parameters in the 
cricket’s nervous system.

As input to all models we used scaled envelope functions, 
as the cricket’s auditory receptors code for amplitude mod-
ulation (Machens et al. 2001; Imaizumi and Pollack 2001). 
To best illustrate the models’ own filtering capabilities, we 
disregarded both the individual and combined transfer char-
acteristics of the cricket’s populations of auditory receptors 
(Sabourin and Pollack 2010; Sharafi et al. 2013) and assumed 
unfiltered inputs. Models were manually tuned to match 
both peak frequency and Q value of ON1’s average rMTF 
( fp = 23.9Hz, Q = 1.34; cf. Fig. 3d) within a tolerance of 
1.5 %. All modeling was performed with custom-written rou-
tines in MATLAB (MathWorks, Natick, MA, USA).
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Model 1: resonate‑and‑fire

To investigate the effects of membrane potential oscilla-
tions on a neuron’s frequency transfer in the spiking regime, 
we adopted the Resonate-and-Fire model (as described in 
Erchova et al. 2004). The model’s subthreshold dynamics 
correspond to the damped oscillations of an RLC circuit 
and are given by a two-dimensional linear system:

where

The membrane potential Vm is diverted from the resting 
potential V0 through injection of input current Iin(t) and the 
presence of neuronal noise In(t). Depolarization is counter-
acted by both a leak current Ilk(t) (governed by membrane 
resistance Rm and capacitance Cm) and an inductive current 
IL(t), mimicking the effects of a delayed rectifier potassium 
channel. Crossing of the constant voltage threshold Vth 
defines the occurrence of an action potential. In these cases, 
Vm is reset to a defined reset value Vr before the model 
progresses.

A subset of the model’s parameters were fixed, with 
V0 = −70mV, Vth = −55mV and In consisting of Gauss-
ian white noise with a standard deviation of 100 pA. 
The amplitude of Iin was set to either 100 or 200 pA, 
resulting in sub- or suprathreshold voltage excursions, 
respectively. To approximate the rMTF of ON1, the 
model’s remaining parameters were manually tuned to 
Vr = −60mV,Rm = 143.0M�,Cm = 54.6 pF, L = 860 kH 
and RL = 187.0M�. A detailed parameter scan was per-
formed post hoc, illustrating the influence of inductance L 
and membrane time constant τm = RmCm on the model’s 
frequency tuning. Simulations were performed at a tempo-
ral resolution of 200 µs.

Model 2: adaptive leaky integrate‑and‑fire

The impact of spike-triggered adaptation and signal inte-
gration on a neuron’s frequency response was explored by 
implementing an adaptive Leaky Integrate-and-Fire model 
(Treves 1993). The subthreshold dynamics of the model are 
identical to the standard Leaky Integrate-and-Fire model 
and correspond to the characteristics of a low-pass RC cir-
cuit. They are given by

Cm
d

dt
Vm(t) = Iin(t)+ In(t)− Ilk(t)− IL(t),

L
d

dt
IL(t) = Vm(t)− V0 − RLIL(t),

Ilk(t) =
1

Rm
(Vm(t)− V0)

Cm
d

dt
Vm(t) = Iin(t)+ In(t)− Ilk(t)− Ia(t).

In this model, a separate variable traces the progression of 
an adaptation current Ia which, by default, is zero. When 
the membrane potential crosses the firing threshold, the 
adaptation variable is incremented by a predefined value 
�Ia and exponentially decays back to zero with time con-
stant τa:

The adaptation current Ia acts as a spike-dependent recti-
fier, driving Vm away from Vth.

For the model to approximate the rMTF of 
ON1, a subset of parameters was manually tuned 
to Vr = −57mV, Rm = 59.0M�, Cm = 59.6 pF, 
�Ia = 49.5 pA and τa = 9.2ms. The remaining param-
eters were identical to the ones used in the Resonate-
and-Fire model. A subsequently applied parameter scan 
was used to illustrate the dependence of the model’s fre-
quency transfer on both the adaptation time constant τa 
and the membrane time constant τm.

Model 3: linear‑nonlinear network

A linear-nonlinear (LN) cascade (Schwartz et al. 2006; 
Clemens et al. 2012) was used to simulate the interactions 
of excitation and inhibition and their effect on frequency 
transfer in a small network :

with

The model consisted of two branches, both of which acted 
as linear low-pass filters by convolving identical copies of 
an input signal s with a Gaussian kernel D of width σ. The 
outputs of the two branches were combined in a weighted 
sum, where one branch was assigned an excitatory (w1 > 0)  
and the other one an inhibitory (w2 < 0) weight. Finally, a 
static nonlinearity F (a Boltzmann function with point of 
inflection y0, saturation a, and width b) was applied, yield-
ing a rectified spike-rate estimate r. In summary, the model 
describes a neuron’s response to low-pass filtered copies 
of a stimulus received through excitatory and inhibitory 
afferents.

Taken alone, each branch acts as a low-pass filter. By 
means of small modifications in either the temporal or the 
spectral domain, the network as a whole can be equipped 

τa
d

dt
Ia(t) = Ia(t).

r(t) = F[w1(D1 ∗ s(t))+ w2(D2 ∗ s(t −�t))],

Di ∗ s(t) =
∫ ∞

0

Di(τ )s(t − τ)dτ ,

Di(x) =
1

√
2π · σi

· e
− x2

2σ2
i ,

F(y) =
a

1+ e(y−y0)b
.
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with band-pass properties: In the first case (Fig. 6), the 
model’s two branches had identical low-pass properties 
(σ1 = σ2); the inhibitory branch, however, was given a 
delay �t > 0. In the second case (Fig. 7), the delay was 
omitted (�t = 0). Instead, the cutoff frequency of the 
inhibitory low-pass filter was lowered relative to that of the 
excitatory branch (σ1 > σ2).

Stimulus amplitude was set to 1. To achieve an approxima-
tion of ON1’s rMTF through a delayed inhibition, the mod-
el’s parameters were tuned to σ1 = σ2 = 3ms, w1 = 0.88, 
w2 = −0.12, �t = 15ms, y0 = 0.75, a = 227Hz and b = 9.  
To fit the data with the model version based on spectral 
manipulation of the inhibitory component, parameters were 
tuned to σ1 = 3ms, σ1 = 6.5ms, w1 = 0.84, w2 = −0.16, 
�t = 0ms, y0 = 0.75, a = 344Hz and b = 9.

Results

Modulation transfer functions of AN1, AN2 and ON1

In order to understand how the firing responses of neurons in 
the cricket auditory periphery depend on the AM frequency 
of the stimuli, we analyzed firing-rate resonances. We were 
inspired by a protocol known from the in-vitro characteriza-
tion of subthreshold resonances, where neurons are stimu-
lated with a sine wave whose frequency increases linearly 
with time (Gimbarzevsky et al. 1984). In the subthreshold 
voltage range, where the membrane potential varies in a 
graded manner, such a resonance analysis is straightforward. 
Subthreshold resonances reflect neuronal filtering where 
stimulus frequencies significantly larger than 0 Hz elicit 
responses with largest voltage amplitude. Such a resonance 
is readily captured by the membrane impedance, which can 
be directly calculated from the Fourier transform of the sub-
threshold voltage response (and the Fourier transform of 
the stimulus). Spiking responses, however, are not graded 
but pulsed. Hence, a few additional steps need to be taken 
into account for the analysis of a resonance based on firing 
rate. In this case, the resonance analysis can based on a high-
resolution peristimulus time histogram (PSTH), obtained 
from repeated presentations of a stimulus and a subsequent 
analysis of the time-resolved spectral content (described in 
more detail below). In addition, we chose acoustic stimula-
tion (in contrast to current injection which is commonly used 
for subthreshold resonances). Analogously to the subthresh-
old case, the acoustic stimulus showed a sinusoidal ampli-
tude modulation (AM) with a frequency increasing linearly 
over time. In other words, the stimuli consisted of swept-fre-
quency amplitude modulated (SFAM) tones.

To experimentally identify firing-rate resonances in the 
AM frequency tuning, we obtained extracellular recordings 
from three auditory cell types in the prothoracic ganglion of 

G. bimaculatus: the ascending neurons AN1 and AN2 that 
form the main input for auditory processes in the cricket 
brain (Boyan and Williams 1982; Schildberger 1984; Hen-
nig 1988) as well as the local interneuron ON1 that inhib-
its the contralateral ascending neurons and its contralateral 
counterpart (Selverston et al. 1985; Horseman and Huber 
1994).

The SFAM stimulation protocol is illustrated in Fig. 1a 
with a representative recording of neuron ON1. The stimu-
lus consisted of a tone of 4.5 kHz carrier frequency with 
a sinusoidal amplitude modulation sweeping through fre-
quencies of 1–100 Hz within 10 s. It covered an AM fre-
quency range of particular relevance to the cricket: the  
∼25 Hz characteristic of the pulsed mating song of male 
conspecifics. The responses of ON1 to stimulus segments 
with a low modulation frequency were attenuated by spike 
frequency adaptation (Fig. 1b). Firing rates increased with 
modulation frequencies up to around 20 Hz (Fig. 1c), after 
which they started to decline again, with fewer spikes fit-
ting the gradually contracting modulation periods of the 
stimulus (Fig. 1d). Eventually, at very high modulation 
frequencies, the cell decoupled from the stimulus and fired 
erratically at low overall rates (Fig. 1e). Altogether, the 
cell’s response exhibited band-pass tuning in the range of 
the behaviorally relevant frequencies.

Spiking neuronal responses to acoustic stimulation with 
systematically varying AM frequencies allow for an analysis 
of both mean firing rates and stimulus-coupled firing. Both 
measures rely on a high-resolution PSTH. Because stimula-
tion frequency increased linearly in time (SFAM protocol), the 
analysis of the spectral content of the PSTH yielded insights 
about frequency preference. Specifically, we extracted the so-
called rate modulation transfer function (rMTF), and the tem-
poral modulation transfer function (tMTF). The first represents 
the average firing rate as a function of stimulus frequency 
(Gerstein and Kiang 1960). The second captures the rate con-
tribution of only those spikes that are temporally locked to 
the stimulus modulation. Graphically, these measures can be 
identified in a plot that depicts the frequency content of the fir-
ing response as a function of time, corresponding to a mag-
nitude spectrogram (Fig. 2a). The rMTF corresponds to the 
amplitude along the horizontal line (Fig. 2a, marked in green), 
showing the dependence of the 0 Hz component (i.e., the 
mean) in time. The tMTF corresponds to the amplitude along 
the diagonal line (Fig. 2a, marked in blue). It characterizes the 
amplitude of the response at frequencies that linearly increase 
in time and hence, because of the design of the SFAM stimu-
lus, correspond to the stimulation frequency. A cell’s decou-
pling from a stimulus is therefore reflected in the divergence 
of the two measures—observed, for example, at high AM fre-
quencies (Fig. 2b). Here, the cell is still firing (relatively high 
spectral magnitude of rMTF), but firing is decoupled from the 
frequency of the stimulus (relatively low spectral magnitude of 
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tMTF). To facilitate the algorithmic detection and characteri-
zation of transfer peaks in individual recordings, the respective 
transfer functions were fitted with cubic smoothing splines.

Figure 3a–d shows the modulation transfer functions of 
AN1, AN2 and ON1, averaged across all recordings. AN1 
exhibited a relatively flat tMTF with no indications for sharp 

a

b c d e

Fig. 1  Exemplary response of ON1 to a 10 s SFAM stimulus ris-
ing in modulation frequency from 1 to 100 Hz (80 dB SPL, 4.5 kHz 
carrier frequency). a Kernel density estimation (KDE, gray) over-
laid with average instantaneous spike rate (ISR, black) across 17 tri-
als. b–e Selected periods from panel a showing (from top to bottom) 

KDE (gray) overlaid with average ISR (black), a spike raster plot, 
and the respective section of the acoustic stimulus. b Spike-frequency 
adaptation erodes the response. c High firing rates, several spikes per 
stimulus period. d Stimulus-locked firing at low overall firing rates. e 
Desynchronized firing at low firing rates

a b

Fig. 2  Modulation transfer functions. a Magnitude spectrogram of 
a cell’s spiking response to an SFAM stimulus (average across 17 
repetitions, same data as in Fig. 1). Because modulation frequency 
changes linearly with time, modulation transfer functions are read-
ily obtained from spectral cross-sections: the rate modulation transfer 
function (rMTF) is identified by the spectrogram’s DC component, 
indicating average firing rate as a function of modulation frequency. 
The temporal modulation transfer function (tMTF) corresponds to 

the spectral cross-section along the envelope’s rising fundamental 
frequency; it represents the absolute rate contribution of stimulus 
locked spikes. The bands to the left of the tMTF represent harmonics 
in the spiking response. b rMTF and tMTF from the spectrogram. To 
ease the automated detection of transfer peaks in individual record-
ings, data was smoothed with cubic smoothing splines (broad lines). 
Filled circles indicate peak frequencies: 23.0 Hz (rMTF) and 23.5 Hz 
(tMTF); Q values 1.25 and 1.69, respectively
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band-pass tuning (Fig. 3a). Due to a relatively high rate of 
false-positive spike events often evident in hook electrode 
recordings of AN1 (Faulkes and Pollack 2000), its rMTF 
could not be derived reliably and was hence omitted. While 
false positive spike events do add to the noise floor of the 
mean rate, they are not phase-locked to the stimulus and thus 
have no impact on the tMTF. AN2 showed clear firing-rate 
resonances, peaking at modulation frequencies of around 
30–40 Hz (Fig. 3b). Its rMTF had a slightly increased peak 
frequency with respect to its tMTF. The two MTFs of ON1 
exhibited a more pronounced drop-off towards higher modu-
lation frequencies; for both measures, distinct band-pass tun-
ing was observed, with peak frequencies at ∼25 Hz (Fig. 3c, 
d). Stimuli with a high carrier frequency resulted in a sharper 
tuning than those with a low carrier frequency, which is dif-
ferent to previous findings for T. oceanicus based on compa-
rable measures (cf. Marsat and Pollack 2004).

In addition to the average MTFs, we also analyzed the 
statistics across recordings: transfer peaks detected in indi-
vidual recordings were characterized by their respective 

peak frequency and Q values, as summarized in Fig. 3e, 
f and Table 1. The Q value indicates how pronounced 
a resonance is. We used a definition of the Q value often 
encountered in the analysis of subthreshold resonance: the 
ratio between the amplitude at the peak and the amplitude 
at 0 Hz. This ratio equals one for low-pass characteristics 
(cases of no resonance) and is larger than one in cases of 
resonance (see Fig. 3f). Please note that various other, 
though related measures termed Q values are used in dif-
ferent fields to quantify the “quality” of a resonance. By its 
definition, the Q value used here characterizes the low-fre-
quency drop-off of a filter—it does not capture differences 
in the high-frequency drop-off.

Model: different means to obtain a neuronal band‑pass 
filter

Results from our experiments suggest that both AN2 and 
ON1 are tuned to behaviorally relevant stimulus frequen-
cies. In contrast to approaches like the ZAP protocol, which 

a c e

b d f

Fig. 3  Summarized results of electrophysiological experiments. 
Stimulation was performed at 4.5 or 16 kHz carrier frequency, 
depending on cell type. a–d Mean modulation transfer functions 
(MTFs) by cell type across all recordings. Panels a and b comprise 
two sets of stimuli with different ranges of AM frequencies, hence 
the apparent seam in the respective MTFs. N denotes the number of 

recordings. e peak frequencies for detected peaks in MTFs of individ-
ual recordings. The dashed lines indicate the 25 Hz pulse frequency 
typical for songs of G. bimaculatus. n denotes the number of indi-
vidual recordings with detected peaks. f Corresponding Q values with 
values above 1 indicating pronounced resonant peaks. Outliers are 
marked with crosses
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is used for the characterization of subthreshold frequency 
transfer (cf. Gimbarzevsky et al. 1984), our approach 
focusses on firing-rate resonances. Moreover, stimulation 
is acoustic and does therefore not drive the recorded cells 
directly: the acoustic stimuli are first processed by receptors 
and other neurons in the local network, so that the response 
characteristics are shaped both by the recorded neurons 
themselves and by upstream neurons. The observed firing-
rate resonances could hence be based on both cell-intrinsic 
and network-based mechanisms. While we cannot iden-
tify the physiological mechanisms shaping the resonance 
based on our experiments, we use mathematical models 
to show that three generic and well-established principles 
are compatible with the observed firing-rate resonance: (1) 
subthreshold resonances, (2) spike-frequency adaptation, 
and (3) an interplay of excitation and inhibition. We tuned 
these models to match the average rMTF of ON1 (Fig. 3f, 
fp = 23.9Hz, Q = 1.34), as this cell type indicated the 
most pronounced tuning during our electrophysiological 
experiments, and the given measure is suited for investi-
gating a system that relies on a rate-code (cf. Schildberger 
1984; Kostarakos and Hedwig 2012).

In the first model, firing-rate resonances were induced 
cell-intrinsically through subthreshold resonances of the 
membrane potential. Subthreshold resonances have been 
well characterized in many cell types (for a review, see 
Hutcheon and Yarom 2000) and give rise to band-pass fil-
tering in the subthreshold range of membrane potentials. 
These filter properties can also carry over to the firing 
regime (Schreiber et al. 2004; Engel et al. 2008; Izhikevich 
2001; Schreiber et al. 2009) and shape a firing-rate reso-
nance (Richardson et al. 2003). We implemented a Reso-
nate-and-Fire model (Izhikevich 2001), where excursions 
of the membrane potential are counteracted by an inductive 
current. The model’s resonant dynamics lead to an initial 
voltage overshoot in response to a subthreshold current 
pulse which translates into a corresponding initial overshoot 
of the firing rate in the suprathreshold regime (Fig. 4a, b). 
Accordingly, resonances manifested themselves in both 
the sub- and suprathreshold frequency transfer (Fig. 4c, 

d). By manually tuning the parameters (see "Materials and 
methods"), the model displayed a firing-rate resonance at 
23.9 Hz with a Q value of 1.34, closely resembling the 
rMTF of ON1. For frequencies above ∼50 Hz, however, 
the model’s frequency transfer diverged from the experi-
mentally obtained data. For completeness, we note that this 
discrepancy stemmed from the limited number of model 
parameters, preventing an independent control of low- and 
high-frequency filter characteristics.

The characteristics of the firing-rate resonance, like 
the peak frequency and Q value, depended on the model’s 
parameters. To illustrate the robustness of tuning, these val-
ues are shown as a function of the parameters for induct-
ance L and membrane time constant τm (Fig. 4e, f). Both 
parameters correlated positively with the peak frequency 
and the Q value of the model’s firing-rate resonance, but 
to different degrees: while the membrane time constant had 
the bigger influence on the peak frequency, the Q value 
could be controlled by means of the inductance.

The second model relies on the effect of adaptation, a 
universal phenomenon in neuronal systems that may be 
caused by a variety of mechanisms. Some of these mech-
anisms effectively depend on the occurrence of action 
potentials, as the adaptation currents are caused by ionic 
conductances that activate only at weakly negative or even 
positive membrane potentials which require large depolar-
izing voltage excursions. Such conductances can, for exam-
ple, comprise M-type or mAHP-type currents with high 
activation thresholds (Benda and Herz 2003). The adapt-
ing Leaky Integrate-and-Fire neuron (Treves 1993) allows 
to implement an adaptation-based firing-rate resonance by 
combining high-pass properties of spike-triggered adap-
tation with low-pass properties of the non-resonant sub-
threshold voltage dynamics (Fig. 5a, b). Here, the adap-
tation current only depended on the occurrence of spikes 
and, in contrast to the model described above, the voltage 
dynamics did not exhibit band-pass properties in the sub-
threshold regime (Fig. 5c). In the spiking regime, however, 
the adaptation current Ia added a high-pass component to 
the response, leading to a firing-rate resonance (Fig. 5d).

Table 1  Detected peaks in individual modulation transfer functions

fc denotes the carrier frequency used for stimulation, N the number of recordings, np the number of recordings with detected transfer peaks. ˜fc 
and ˜Q correspond to the median peak frequency and median Q value of the respective peaks

Type fc (kHz) N rMTF tMTF

np ˜fc (Hz) ˜Q np ˜fc (Hz) ˜Q

AN1 4.5 8 0 – – 2 21.0 1.26

AN2 16.0 11 2 33.8 1.38 5 27.7 1.69

ON1 4.5 10 6 22.9 1.42 10 22.8 1.44

ON1 16.0 10 9 23.2 1.40 10 22.6 1.49
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By tuning the model’s parameters we were able to obtain 
a peak frequency of 23.6 Hz with a Q value of 1.34, closely 
matching the data obtained for ON1. We again applied 
an exemplary parameter scan to illustrate the influence of 
individual parameters on the model’s transfer function. 
While the peak frequency of the firing-rate resonance was 
strongly influenced by the membrane time constant τm, the 
adaptation time constant τa had only little effect (Fig. 5e). 
Nevertheless, τa exhibited a clear influence on the Q value 
of the firing-rate resonance (Fig. 5f).

Computation within the cricket’s auditory system is not 
limited to intracellular mechanisms. Despite its size, the 
prothoracic system has an interesting topology that includes 
both excitatory and inhibitory elements (Wohlers and Huber 
1982). ON1 neurons, in particular, receive excitatory inputs 
from the receptor populations and inhibitory inputs from its 
contralateral counterpart (cf. Wiese and Eilts 1985; removal 
of the contralateral inhibition in T. oceanicus, however, did 
not affect the information tuning: Marsat and Pollack 2004). 
We hence implemented a simple model of the local network 
based on a linear-nonlinear (LN) cascade and investigated 
the formation of firing-rate resonances based on the inter-
actions of excitatory and inhibitory network components. 

Specifically, we analyzed two versions of the model, equiva-
lent to different physiological implementations. Both pro-
vide a firing rate estimate by computing the weighted sum 
of two low-pass filtered copies of the stimulus—one of them 
“excitatory” (additive), the other one “inhibitory” (subtrac-
tive)—and applying a rectifying Boltzmann non-linearity 
(Figs. 6, 7). Resonances were introduced through param-
eters of the inhibition—either in time or in the frequency 
domain: In the first case, a temporal delay �t was added 
to the inhibitory branch (Fig. 6a). While this did not affect 
the two branches’ individual frequency transfer (Fig. 6c), 
their combined output showed a clear resonance which we 
tuned to a peak frequency of 23.8 Hz and a Q value of 1.35 
(Fig. 6d). In the second case, the low-pass filter of the inhib-
itory branch was set to a lower cutoff frequency than that 
of the excitatory branch (Fig. 7a). After tuning the respec-
tive parameters (see "Materials and methods"), the two fil-
ters’ frequency transfers (Fig. 7c) combined to an accurate 
approximation of the rMTF of ON1, with a peak frequency 
of 23.8 Hz and a Q value of 1.37.

Overall, all three model types produced a good quanti-
tative match to the experimental data, despite differences 
in the underlying biophysical mechanisms (subthreshold 

a c e

fdb

Fig. 4  Resonate-and-Fire model. a Subthreshold (dashed) and 
suprathreshold (solid) responses to current pulses of either 100 or 
200 pA amplitude and 100 ms duration (gray). In this panel, the noise 
current was omitted for clarity. Note the damped voltage oscillations 
after onset and offset of the current (arrows). b Firing rate profile in 
response to a 200 pA pulse, 20 repetitions. Instantaneous spike rate 
(top) and exemplary spike raster plot (bottom). c The subthreshold 

impedance amplitude profile (ZAP) displayed a weak resonance peak 
at 19.3 Hz with a Q value of 1.04. d Suprathreshold frequency trans-
fer, 50 repetitions, peaking at 23.9 Hz with a Q value of 1.34. e, f A 
parameter scan serves to illustrate the impact of membrane time con-
stant τm and inductance L on peak frequency and Q value. The param-
eter combination used in a–d is marked by a cross
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resonance, spike-frequency adaptation, and properties of 
the inhibition).

Discussion

Using an efficient experimental protocol, we quantified fir-
ing-rate resonances in several peripheral auditory neurons 
of the cricket G. bimaculatus that are tuned to behaviorally 
relevant frequencies. We further demonstrated that our 
experimental findings can be consistently reproduced by 
three different mathematical neuron models which rely on 
single-cell mechanisms (subthreshold resonance or spike-
triggered adaptation) or specific properties of inhibition in 
the local network. In general, the analyzed mechanisms are 
interesting candidates for firing-rate resonances beyond the 
cricket auditory system.

Experimental protocol

To assess an auditory neuron’s frequency transfer at the 
level of firing rates, we conceived of a straightforward pro-
tocol that uses acoustic stimuli sweeping through a range 

of modulation frequencies (Figs. 1, 2). Our approach draws 
inspiration from the ZAP protocol (Gimbarzevsky et al. 
1984; Hutcheon and Yarom 2000; Schreiber et al. 2004), 
used to assess the frequency dependence of subthreshold 
voltage responses in single cells. In contrast to the lat-
ter approach, however, we here characterize a neuron’s 
suprathreshold firing rate responses to cell-external stimuli. 
Thus, the observed frequency characteristics are not shaped 
by the recorded cell’s subthreshold properties alone, but 
also by properties of its spike generating mechanism and 
upstream elements (including the mechanical properties of 
the tympanum, sensory transduction processes and proper-
ties of the receptor neurons). Although a number of proto-
cols have been used to assess firing-rate resonances in audi-
tory networks, the SFAM protocol has general advantages 
with relevance to our study: First, it quantifies both mean 
and stimulus-locked firing rates (rate and temporal modula-
tion transfer functions). Second, SFAM stimuli can assess a 
broad range of modulation frequencies within a short time, 
thus providing a better consistency in recording conditions 
and an overall reduced recording time, when compared to 
stimuli with a constant modulation frequency (Farris et al. 
2004; Schildberger 1984; Kostarakos and Hedwig 2012). 

a c e

fdb

Fig. 5  Adaptive Leaky Integrate-and-Fire Model. a Subthreshold 
(dashed) and suprathreshold (solid) responses to current pulses of 
either 100 or 200 pA amplitude and 100 ms duration (gray). In this 
panel, the noise current was omitted for clarity. The adaptation cur-
rent Ia is increased with each spike and decays in an exponential man-
ner. b Firing rate profile in response to a 200 pA pulse with added 
noise current, 20 repetitions. Instantaneous spike rate (top) and 

exemplary spike raster plot (bottom). c The subthreshold impedance 
amplitude profile (ZAP) displayed no resonance. d Suprathresh-
old frequency transfer, 50 repetitions, peaking at 23.6 Hz with a Q 
value of 1.34. e, f A parameter scan serves to illustrate the impact of 
membrane time constant τm and adaptation time constant τa on peak 
frequency and Q value. The parameter combination used in a–d is 
marked by a cross
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Third, while they lack a chirp component, SFAM stimuli 
involve a pulse-like amplitude modulation and are thus still 
similar to the cricket’s natural song (refer to Hennig 2009 
for the attractiveness of continuous pulse trains).

Firing‑rate resonances of neurons and behavioral 
relevance

The auditory pathway of the cricket is a dedicated system 
designed to detect and localize two classes of objects: mat-
ing partners and predators, most prominently bats. In line 
with these tasks, peripheral frequency filtering and object 
categorization is well known (Wohlers and Huber 1978; 
Wyttenbach et al. 1996; Hildebrandt 2014). At the net-
work level of the peripheral auditory system of the cricket, 
AN1 and AN2 represent the two channels of information 
transmission associated with such a categorical perception, 
as given by their differential tuning for low and high car-
rier frequencies (Wohlers and Huber 1978; Hennig 1988) 
and their ability to modulate behavior (for AN1: Schild-
berger and Hörner 1988; for AN2: Nolen and Hoy 1984; 
Marsat and Pollack 2006). The function of ON1 is usually 
attributed to localization (Selverston et al. 1985). As ON1 

exhibits wide carrier tuning, it affects both transmission 
channels.

To adequately stimulate the low frequency channel of G. 
bimaculatus, we chose a carrier frequency of 4.5 kHz, cor-
responding to the fundamental carrier frequency of the spe-
cies’ calling song (Doherty 1985) and the characteristic fre-
quency of AN1 (Fig. 2 in Schildberger 1984). The transfer 
function of AN1 did not exhibit a clear tuning to the 25 Hz 
modulation rate of the calling song but was rather broadly 
tuned (Fig. 3a; Table 1) in line with studies on other cricket 
species (T. oceanicus: Benda and Hennig 2008, G. assi‑
milis: Pollack and Kim 2013). On the level of information 
rate, however, such a tuning has previously been demon-
strated (T. oceanicus: Marsat and Pollack 2005). Clear 
rate coding for conspecific pulse patterns apparently only 
manifests at higher processing stages as evidenced by the 
observed broad tuning of AN1 and the hierarchical tun-
ing of brain neurons (Schildberger 1984; Kostarakos and 
Hedwig 2012). The temporal tuning of ON1 at low car-
rier frequencies is well known, although its primary role 
is usually seen in the context of contrast enhancement of 
binaural localization cues. Early reports even proposed 
oscillatory properties for ON1 (Wiese and Eilts 1985), but 
low- and band-pass selectivity was also described—albeit 

a b

dc

Fig. 6  LN Network Model, variant 1. a Schematic. The input was 
processed in two parallel branches, one excitatory (+) and one inhibi-
tory (–). In both branches, the signal was low-pass filtered with iden-
tical cutoff frequencies. In the inhibitory branch, however, the signal 
was delayed by �t. The weighted sum of the two branches’ output 
was passed through a sigmoidal non-linearity to obtain a firing rate 
estimate. b Response of the model and its components to a pulse 
stimulus (gray). Note the onset peak of the model’s output. c Identical 
frequency transfer of the model’s excitatory and inhibitory branches. 
d Frequency transfer of the model compared to data measured during 
experiments

a b

dc

Fig. 7  LN Network Model, variant 2. a Schematic. Like in the previ-
ous model, the input is simultaneously processed by an excitatory (+) 
and an inhibitory (–) branch, both of which acted as low-pass filters. 
The cutoff frequency of the inhibitory branch was lower than that of 
the excitatory branch. The weighted sum of the two branches’ out-
put was passed through a sigmoidal non-linearity to obtain a firing 
rate estimate. b Response of the model and its components to a pulse 
stimulus (gray). c Frequency transfer of the model’s excitatory and 
inhibitory branches. d Frequency transfer of the model compared to 
data measured during experiments
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by different measures (instantaneous spike rate: Nabatiyan 
et al. 2003, information rate: Marsat and Pollack 2004). 
The observation of ON1’s temporal tuning to the pulse 
rate of the conspecific calling song (Tunstall and Pollack 
2005) corroborates its role in a dedicated network and 
likely accounts for the firing-rate resonances observed here 
(Fig. 3c).

The high frequency channel was stimulated with a car-
rier frequency of 16 kHz, based on the characteristic fre-
quency of AN2 (Fig. 2 in Schildberger 1984). In contrast to 
AN1, both AN2 and ON1 display a fairly broad carrier tun-
ing (Wohlers and Huber 1982) which covers both the low 
power harmonics of cricket’s calling song (Nolen and Hoy 
1986) and courtship song (Libersat et al. 1994) as well as 
the ultrasound cries of predatory bats (Schnitzler and Kalko 
2001. In the high frequency channel the transfer functions 
of ON1 and AN2 revealed temporal selectivity between 
25 and 40 Hz, respectively (Fig. 3b, d; cf. Marsat and Pol-
lack 2004, 2005). Although burst coding of AN2 is known 
to mediate an evasive response in flying crickets (Marsat 
and Pollack 2006), the firing-rate resonance within the 
frequency channel that is attributed to bat detection may 
also contribute to an adaptive response of flying crickets: 
For insects different evasive strategies upon bat detection 
are well known (Roeder 1962) and may at least in part be 
mediated by a filter for high pulse rates (moth: Boyan and 
Fullard 1988; mantid: Triblehorn et al. 2008; Yager 2012). 
To that effect, the AN2 could play a role in mediating a tac-
tical switch in the cricket’s evasive behavior (Fullard et al. 
2005).

Mathematical neuron models

Resonances of subthreshold voltage responses have been 
extensively discussed in the literature (see Hutcheon and 
Yarom 2000 for a review). For the transfer of information 
between neurons, however, the suprathreshold (i.e., spik-
ing) response is relevant, because in many networks neurons 
are coupled via spikes rather than subthreshold membrane 
potentials. The mechanisms that shape firing-rate reso-
nances, however, are diverse. While the mathematical mod-
els discussed in this study have individually been presented 
before, we here provide a comparative analysis show-
ing that all three conceptually different models, based on 
either single-cell or network based phenomena, are equally 
effective in reproducing and explaining the experimentally 
observed firing-rate resonances. These mechanisms are 
likely to underly firing-rate resonances in many other sys-
tems and we hope to encourage the use of the corresponding 
mathematical models beyond the auditory neurons at hand. 
Accordingly, the number of model parameters was deliber-
ately kept as low as possible, emphasizing the working prin-
ciples and the robustness of the reviewed mechanisms.

In the first model—an implementation of the Resonate-
and-Fire model as in Erchova et al. 2004—firing-rate reso-
nances emerged from a band-pass in the subthreshold mem-
brane impedance (Fig. 4). Web et al. 2007 demonstrated that 
such a mechanism could explain phonotactic preference 
functions of bushcrickets by fitting a similar model (Izhik-
evich 2001) to behavioral data of Tettigonia cantans. Sub-
threshold resonances do not have to be particularly strong to 
produce a considerable effect on firing rates: a subthreshold 
impedance with a Q value of 1.04 was sufficient in matching 
the experimentally observed firing-rate resonance (Fig. 4c). 
Note that this observation is similar to what has been termed 
the iceberg effect in the visual system, where subthreshold 
responses have been shown to exhibit broader selectivity 
than firing responses (e.g., Rose and Blakemore 1974). In 
the model at hand, the mild peak in the subthreshold mem-
brane impedance translates to a sharper peak in the fre-
quency dependence of the firing rate because of the threshold 
nonlinearity. Interestingly, this simple mechanism for sharp-
ening the resonance does not require additional processes 
that exhibit band-pass filter properties on their own—a sim-
ple threshold nonlinearity suffices. One may speculate that in 
analogy to such an iceberg effect on the cellular level, a cel-
lular firing-rate resonance in the periphery may result in an 
even stronger frequency selectivity in neurons of the cricket 
brain when combined with suitable nonlinearities at subse-
quent processing stages. Such nonlinearities may involve 
additional band-pass filters, but they do not have to. Simple 
threshold-like nonlinearities and hence simple non-resonant 
neurons with a firing threshold at sufficiently high voltages 
(that pick up only the frequencies with largest response) 
could, in principle, be sufficient to produce a high frequency 
selectivity in the brain, as long as a modest resonance is pre-
sent in the periphery. Note that there currently is no evidence 
in support of this effect in the cricket auditory system. Nev-
ertheless, it is worth pointing out that, from a more general 
perspective of nervous system design, weak resonances can 
be sufficient to shape stronger resonances in downstream 
neurons when combined with nonlinearities. Returning to 
subthreshold resonances, direct evidence for such a mecha-
nism in the cricket auditory periphery would be provided 
by intracellular recordings—previous studies involving this 
technique, however, did so far not indicate subthreshold res-
onances (Wohlers and Huber 1978, 1982; Selverston et al. 
1985). Evidence for network based over intrinsic mecha-
nisms (in the recorded cells) was provided for T. oceanicus 
by (Sabourin and Pollack 2010), as information tuning was 
essentially unchanged when spikes and, presumably, most 
or all subthreshold conductances, were suppressed by strong 
hyperpolarization.

In the second model, a variation of the Leaky Integrate-
and-Fire model, subthreshold voltage dynamics were non-
resonant (Fig. 5). In the suprathreshold regime, however, 
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a spike-triggered, slowly decaying adaptation current pro-
vided suppression of low frequencies (Benda and Hen-
nig 2008). Here, as in the first model, parameters affected 
different aspects of the transfer function, enabling us to 
independently tune peak frequency and Q value (Fig. 5e, 
f). The resonance-generating mechanism is very similar 
to the Resonate-and-Fire model: Potassium channels, for 
instance, could underlie the resonances in both models, but 
their activation curves would be shifted. For activation of 
potassium channels at lower voltages, a subthreshold reso-
nance becomes evident. If, however, the potassium channel 
activation curve is shifted to more depolarizing voltages 
(so that voltage elevations required for activation are only 
reached during a spike), resonance manifests itself only in 
the supra-, but not the subthreshold range. Subthreshold 
resonance and spike-frequency adaptation are thus mecha-
nistically and biophysically highly related phenomena.

In the third model, band-pass filtering relied on the com-
bination of low-pass excitation and low-pass inhibition in a 
network of linear-nonlinear (LN) neurons. In one version of 
the model, high-pass properties were introduced by a tem-
poral delay in the network’s inhibitory branch (cf. Bürck 
and van Hemmen 2009): input components shorter than this 
delay fully contributed to the rectified output rate; longer 
ones were attenuated by inhibition (Fig. 6). In an alterna-
tive version of the model, band-pass filtering arose from 
differences in the spectral structure of the excitatory and 
inhibitory signal (Fig. 7). Inhibition specifically reduced 
low frequency components of a more broadly-tuned excita-
tion. Both models reproduced the firing-rate resonance well. 
Nevertheless, in the first version of the model delays on the 
order of ∼15 ms were needed. While such long inhibitory 
delays are generally feasible they seem unlikely for a sys-
tem as small as the cricket’s prothoracic auditory network.

Please note that, in general, all mechanisms discussed 
here need not produce an exceedingly strong bandpass-tun-
ing. When they are part of a distributed filtering cascade, 
the transfer characteristics of several serially arranged filter 
elements of moderate individual strength could result in a 
much stronger tuning.

Conclusion

Using an efficient stimulus protocol to record neuronal 
responses to a wide range of stimulus frequencies, we quan-
tified firing-rate resonances in the peripheral auditory sys-
tem of crickets. Most neurons expressed clear bandpass tun-
ing, indicating that the small nervous system of the cricket 
focuses its coding capacity on behaviorally-relevant cues. 
Contrary to our initial expectations, AN1 did not yield a 
clear bandpass tuning, contradicting the idea of strong fil-
tering for calling song signals in the periphery (Nabatiyan 

et al. 2003; Pollack and Kim 2013). Evidently, information 
about song patterns, for which pulse rate is a salient cue, is 
extracted by a dedicated circuit in the cricket’s brain. How-
ever, information about direction across both relevant fre-
quency ranges (ON1; Selverston et al. 1985; Horseman and 
Huber 1994) and predator signals in the ultrasonic range 
(AN2; Nolen and Hoy 1984) appear to be represented in a 
more selective manner at the prothoracic level of processing.

Our models show that several ubiquitous neuronal prin-
ciples are equally effective in producing bandpass proper-
ties: subthreshold resonances, spike-triggered adaptation, 
as well as an interplay of excitation and inhibition. In 
this context, distinct neuronal mechanisms can fit a com-
mon conceptual framework: single-cell and network mod-
els share a negative feedback component, implemented 
either through ion channels (for subthreshold resonance 
and spike-frequency adaptation) or at the level of synaptic 
transmission (Urdapilleta and Samengo 2015). Feedback is 
a common theme in sensory processing; resonance in the 
response of individual neurons is a direct consequence. 
The firing-rate resonances observed in the experimental 
data are most likely produced by an interplay of several of 
these mechanisms (cf. Rössert et al. 2011)—future studies 
will identify the contribution of individual mechanisms by 
quantifying the subthreshold impedance, firing rate adapta-
tion, or the timing of inhibitory versus excitatory inputs.
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