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SUMMARY
Cricket song recognition is thought to evolve throughmodifications of a shared neural network. However, the
species Anurogryllus muticus has an unusual recognition pattern that challenges this view: females respond
to both normal male song pulse periods and periods twice as long. Of the threeminimal models tested, only a
single-neuron model with an oscillating membrane could explain this unusual behavior. A minimal model of
the cricket’s song network reproduced the behavior after adding a mechanism that, while present in the full
network, is not crucial for song recognition in other species. This shows how a shared neural network can
produce diverse behaviors and highlights how different computations contribute to evolution. Our results
also demonstrate how nonlinear computations can lead to rapid behavioral changes during evolution
because small changes in network parameters can lead to large changes in behavior.
INTRODUCTION

Evolution has given rise to diverse animal forms and behaviors.

Much of this phenotypic diversity is shaped by the process of

mate recognition and sexual selection, and various categories

of phenotypic cues—visual, acoustic, chemical, and tactile—

must be integrated for mate choice decisions to be made. For

many species, acoustic signals—calling or courtship songs—

are among the first features to be recognized and evaluated in

mate choice decisions. The acoustic communication signals

produced during courtship behaviors are therefore highly diverse

and contribute to species recognition. However, how the neural

networks that produce this behavioral diversity evolve is largely

unknown. A common hypothesis is that novel behaviors arise

from shared neural networks—mother networks—through small

changes in connectivity and in cellular properties.1–5 At first

sight, the idea of incremental changes in network parameters un-

derlying behavioral evolution is at odds with the observation that

behavior can change rapidly6–9 and outlier species—species

with a highly unusual phenotype in a species group—challenge

the mother network hypothesis. Evolutionary-developmental

biology explains rapid morphological change—so-called "hope-

ful monsters"—through the re-use and modification of nonlinear

gene-regulatory modules.10,11 Because of these nonlinearities,

large morphological changes can then arise from a single muta-

tion in a saltatory instead of a gradual manner. Similarly, behav-
iScience 28, 111695, Febru
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ioral innovations—"behavioral monsters"—could emerge from

small changes in a neural network from the nonlinear mapping

between the network’s parameters and the behavior.

Experimental tests of the mother network hypothesis are chal-

lenging because they involve characterizing and comparing the

network properties across many species in a group and then

causally linking the changes in network properties to changes

in behavior. However, a precondition for the mother network hy-

pothesis is that the shared network has the capacity to produce

the diverse species-specific behaviors in a group. Computa-

tional modeling can help assess this capacity from behavioral

data, by comparing the observed behavioral diversity with that

produced by a computational model of the shared mother

network. If the model of the proposed mother network fails to

reproduce the behavior of a specific species then that species

likely has undergone more drastic changes in its recognition

mechanism inconsistent with the mother network hypothesis.

Conversely, the hypothesis is supported if the network can

reproduce all observed behaviors, including those of the "behav-

ioral monsters"—species with unusual behavioral phenotypes.

We address the question of behavioral diversity and neuronal

evolution in the context of acoustic communication in crickets.

Males produce pulsed calling songs with species-specific pulse

and pause durations ranging between 10 and 80 ms (Figures 1A

and 1B).13 The songs are either produced in chirps consisting of

a few pulses or continuously, in trills. Females evaluate the song
ary 21, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Anurogryllus is a cricket species

with resonant song recognition

(A) Schematic of the calling song of males from the

cricket species Anurogryllus muticus (from now

referred to as Anurogryllus). The song consists of a

train of pulses with a specific pulse duration and

pause. The period is the sum of pulse and pause

and corresponds to the song’s rhythm. The duty

cycle (DC) is the percentage of the period occu-

pied by the pulse and corresponds to the song’s

energy.

(B) Pulse and pause parameters from eight Anu-

rogryllus males. The diagonal line corresponds to a

DC of 50%, the anti-diagonal to the average pulse

period Ts = 8:6ms. See Table 1 for all song pa-

rameters.

(C) Female phonotaxis for pulse trains with

different duration and pause parameters visualized

as a pulse-pause field (PPF). Phonotaxis is color

coded with darker greys representing stronger

phonotactic responses (see color bar). Diagonal

lines indicate stimuli with DCs of 30, 50, and 80%,

shown in D as the phonotaxis along these di-

agonals. The anti-diagonal lines show transects

with constant period stimuli shown in E at the

average pulse period of the male song Ts (orange),

at half (Ts=2, yellow), and twice (2Ts, red) the song

period. Females respond strongly to pulse pat-

terns with the period of themales’ song, but also at

twice that period, indicating resonant song

recognition. See Table S1 for the statistical sig-

nificance of the individual peaks. The PPF was

obtained by the interpolation of the average pho-

notaxis values measured for 75 artificial stimuli in

3–8 females (Fig. S1).

(D) Period tuning as a function of DC given by three transects through the PPF in C (see legend in C). Vertical lines indicate Ts=2 (yellow), Ts (orange), and 2Ts (red).

(E) DC tuning as a function of song period, derived from transects through the PPF in C (see legend in C).

(F) The three previously known female preference types for the pulse pattern of the male calling song in different cricket species: period (left), duration (middle),

and DC (right). The solid black lines indicate the major or most tolerant axis that defines the tuning type, and the double sided arrows perpendicular to the major

axis show the most sensitive feature axis.

(G) Schematic of resonant recognition from Anurogryllus, simplified from C.

(H) Resonant recognition from the katydid Tettigonia cantans.12 The question mark indicates the range of stimulus parameters not tested in the original study.

Anti-diagonal lines in G and H indicate stimuli with Ts=2 (yellow), Ts (orange), and 2Ts (red). See also Fig. S1 and Table S1.
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on the timescale of pulse pause and duration, and of chirps/trills

(Figure 1A).14 Attractive songs elicit positive phonotaxis in the fe-

male. The female tuning for the calling songs can be quantified

by measuring the phonotactic behavior for artificial pulse pat-

terns in a two-dimensional parameter space spanned by pulse

and pause duration (Figure 1C). The strength of phonotactic

orientation toward the acoustic stimulus then serves as a mea-

sure for the strength of recognition. So far, preference functions

are known from 18 cricket species, and they all reveal unimodal

preferences for a single continuous range of song features (15–23

and Ralf Matthias Hennig, unpublished data). The known prefer-

ences fall into three types, characterized by the females’ selec-

tivity for specific features of the pulse song: Tuning for pulse

duration, for period (pulse plus pause), and for duty cycle (dura-

tion divided by period, referred to from now on as "DC") (Fig-

ure 1F). Tuning for pause duration is a fourth possible phenotype,

but this one has not yet been reported in crickets. Song recogni-

tion based on the duration or period of acoustic signals is not

restricted to crickets but is found throughout the animal
2 iScience 28, 111695, February 21, 2025
kingdom.24–27 Understanding the principles underlying the evo-

lution of pulse song recognition in crickets can therefore inform

similar studies in other species groups.

We have recently shown that the song recognition network

described in the period-tuned Gryllus bimaculatus can produce

the diversity of song recognition known in crickets. In

G. bimaculatus, five neurons recognize the song in five steps28:

1) The ascending neuron 1 (AN1) pools and transmits to the brain

information from auditory receptors in the prothorax and pro-

duces an intensity-invariant copy of the song pattern.29 2) The

local neuron 2 (LN2) receives input from AN1 and provides inhi-

bition to LN5 and LN4. 3) The non-spiking LN5 produces a post-

inhibitory rebound potential at the end of each song pulse. 4) LN3

fires only in response to coincident input from the rebound in LN5

and a delayed input from AN1. The input delay from AN1 is tuned

such that coincidence only occurs for pulses with the species-

specific period of 30 ms. 5) LN4 receives inhibition from LN2,

which further sharpens the feature tuning. The tuning of LN4

for the pulse song matches that of the phonotaxis response.



Table 1. Parameters of the calling song of Anurogryllus males

Song parameter Mean ± std Range

Carrier frequency 7.0 ± 0.3 kHz 6.5–7.5 kHz

Pulse duration 5.1 ± 1.0 ms 3.7–6.6 ms

Pulse pause 3.4 ± 0.8 ms 2.1–4.4 ms

Pulse period 8.5 ± 0.3 ms 8.1–9.0 ms

Pulse rate 117 ± 4pulses/s 111�124 pulses/s

Pulse DC 60 ± 10% 50�80%

Data from 8 males over 1 minute of song with at least 7500 pulses per

male. Carrier frequencies from.36
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Similar principles of temporal pattern recognition with delay lines

and post-inhibitory rebounds are known from many sys-

tems30–32 and understanding the capacity and constraints of

this algorithm in crickets can therefore shed light on temporal

pattern recognition across systems. A computational model re-

produced the response dynamics of all neurons in this network

as well as the behavioral output33 and revealed that the network

from G. bimaculatus can produce the three preference types

known in crickets—preference for period, pulse duration, and

duty cycle—through changes in network parameters such as

synaptic strengths or intrinsic neuronal properties. Thus, the

G. bimaculatus network could be the mother network producing

the diversity of song recognition in crickets.

We here describe the male song and female preference of the

cricket species Anurogryllus muticus (from now on referred to as

Anurogryllus). Anurogryllus females exhibit a multi-peaked

recognition phenotype that is unreported in crickets and could

challenge the hypothesis of a shared mother network: Females

are attracted not only to the period of the male song but also

to twice the period (Figures 1C–1E). Importantly, all other known

cricket species have preference functions with a single peak

(15–23 and Ralf Matthias Hennig, unpublished data) while Anurog-

ryllus exhibits a multi-peaked preference function. All existing

evidence, therefore, points toward Anurogryllus having a pheno-

type that is highly unusual and an outlier in the context of

crickets, consistent with the concept of "behavioral monsters".

Responses to multiples or fractions of a song’s period have

only been shown in a single species of katydids, Tettigonia can-

tans (Figure 1H), and such responses are consistent with a reso-

nant mechanism for song recognition.12 Computational

modeling in katydids has suggested that delay-based mecha-

nisms can not explain the resonant responses in the katydid

and provided evidence for a nonlinear resonant-and-fire (R&F)

mechanism of song recognition in katydids.34 Importantly, it is

unclear whether the computational model of the song recogni-

tion network in crickets—which relies on a delay-based mecha-

nism—can produce the resonant preference of Anurogryllus.

Thus, Anurogryllus is a challenge to the mother network hypoth-

esis and an opportunity to identify the computational principles

that can give rise to resonant tuning.

Here, we provide further support for the mother network hy-

pothesis, by demonstrating that it can produce the resonant

recognition behavior of Anurogryllus. We first explore the tuning

properties of minimal models of resonant behavior based on

network and intracellular mechanisms and compare these
results to those obtained from the full mother network model.

Lastly, we explore the hypothesis that nonlinear computations,

such as those that give rise to resonant recognition behaviors,

could form the substrate for saltatory behavioral evolution.

RESULTS

Anurogryllus exhibits an unusual resonant recognition
phenotype
The calling song of Anurogryllusmales consists of continuous trills

with a pulse period Ts of 8:5± 0:3ms, which corresponds to a

pulse rate fs of 117:1± 4:3 pulses per second (Figures 1A and

1B). This pulse rate is unusually high for cricket songs, which

have pulse rates between 10 and 50 pulses per second.35 The

song’s DC—given by the ratio of pulse duration and pulse period,

and indicating how much of the song is filled by pulses—is 60 ±

10% (see Table 1 for a list of all song parameters). To quantify the

preference of Anurogryllus females for the calling song we quan-

tified the strength of the females’ phonotaxis response during the

playback of 75 artificial pulse trains with different pulse and pause

duration combinations (Figure 1C, S1). This confirms that females

are attracted (perform positive phonotaxis) to the pulse trains pro-

duced by conspecific males: The two-dimensional preference

function spanned by pulse duration and pause contains a broad

peak covering periods of 8.5ms and DCs of 33–80%, which over-

laps with the distribution of male songs. This peak is partially split

along the DC axis (Figure 1C).

However, the phonotaxis experiments also reveal that females

are attracted to songs that differ substantially from the conspe-

cific song and the tuning of these off-target responses implies a

resonant recognition phenotype in Anurogryllus (Figures 1D and

1E; Table 1). These off-target responses appear at twice or half

the song period: First, a song with twice the period of the male

song (17 ms) with a high DC (90%) is almost as attractive as

the conspecific song. Second, females are also weakly attracted

to song with twice the conspecific period (17 ms) and lower DC

(25%). Lastly, there is a weak and non-significant response peak

at half the conspecific period (4.5 ms) and low DC (33%). The re-

sponses at integer fractions or multiples of the song’s funda-

mental rate indicate a resonant response mechanism. If we

define Ts = 8:6ms as the period of the male song, and the

fundamental rate fs = 1=Ts = 116pulses per second, then

the weak peak at half the period, Ts=2z4:3ms, corresponds to

the second harmonic, 2fs, while the peaks at twice the period,

2Tsz17:2ms, corresponding to the second subharmonic, fs=2.

This resonant song recognition behavior—with responses to

three different types of pulse patterns—is unusual in a cricket

(Figures 1F and 1G) but was previously shown in the katydid Tet-

tigonia cantans12 (Figure 1H). The resonant phenotype in

T. cantans is similar to that of Anurogryllus: T. cantans females

are attracted to pulse trains with the period of the male song

(period 40 ms, DC 50%), and to subharmonics of the male

song—songs with twice the conspecific period (80 ms, DC

25%). T. cantans does not respond to harmonics (half the period,

20 ms) and it was not tested whether females are attracted to

twice the period at higher DCs, the pattern that Anurogryllus is

most responsive to apart from the conspecific song. A simple

delay-line based mechanism in T. cantans was ruled out as a
iScience 28, 111695, February 21, 2025 3



Table 2. Parameters of the simple models fitted to reproduce the

Anurogryllus preference function

Model Parameter name

Parameter

value

Autocorrelation delay Dac 17.0 ms

output gain gac 0.21

Rebound delay Drb 22.93 ms

filter inhibitory gain gi 0.045

filter inhibitory duration Ti 5.06 ms

filter excitatory gain ge 0.1

filter excitatory duration Te 2.00 ms

Rebound with

feedforward

inhibition

(remaining

parameters were

taken from the

rebound model)

delay Dffi 7.29 ms

filter inhibitory gain gfi 1.01

filter inhibitory duration Tfi 2.43 ms

filter excitatory gain gfe 0.63

filter excitatory duration Tfe 2.45 ms

Resonate and fire frequency frf = u=2=p 109.34 Hz

damping b �0.0005

input gain gs 0.027

output gain grb 0.0025
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potential mechanism for resonance using experimental tests, but

a resonate-and-fire neuron model with oscillatory membrane

properties could reproduce the resonant song preference.12,34

Oscillatory neurons have therefore been proposed as a mecha-

nism for song recognition in T. cantans. However, the rebound-

based mechanism at the core of the song recognition network

in crickets had not been considered, and it is unclear whether

oscillatory neurons can reproduce the particular pattern of reso-

nance observed in Anurogryllus.

Simple models provide insight into the computational
mechanisms of resonant tuning
The resonant phenotype in Anurogryllus challenges the mother

network hypothesis, as the model of the song recognition

network in crickets was only shown to produce all known sin-

gle-peaked phenotypes, not the specific resonant phenotype

of Anurogryllus37 (Figures 1F and 1G). We, therefore, tested

whether this model network could also produce the resonant

tuning of Anurogryllus. However, given that the computational

model of the song recognition network in crickets is complex

and has many parameters, we decided to first identify the

computational principles and constraints that shape resonant

tuning by investigating the ability of simple network and single-

neuron models to qualitatively reproduce the resonant behavior

of Anurogryllus. Simple models allow us to 1) isolate the minimal

set of computations required for generating resonant behaviors,

2) facilitate the interpretation of the more complex network

model, and 3) rule in or out alternative mechanisms not currently

part of the mother network but that might be easily acquired dur-
4 iScience 28, 111695, February 21, 2025
ing evolution. Given the simplicity of themodels chosen, our goal

was not a detailed reproduction of the Anurogryllus behavior

(Figure 1C), but a reproduction of the most prominent properties

of the period and DC tuning: namely the broad DC peak at the

period of the male song, Ts, and the two response peaks at

2Ts, with the dominant peak at high DC (Figure 1G).

We fitted three simplemodels to the behavioral data fromAnu-

rogryllus (Table 2): First, an autocorrelation model, which con-

sists of a delay line and a coincidence detector.12 This is the

simplestmodel that can produce resonances and shows that de-

lays alone can produce resonant response peaks. Second, the

rebound model, which is an extension of the autocorrelation

model and captures the core computation of the mother

network, in which the non-delayed input to the coincidence de-

tector consists of offset responses from a post-inhibitory

rebound.28,37 The rebound model will reveal whether the core

computation of the mother network—a delay line, rebound,

and coincidence detection—is sufficient to produce the resonant

tuning of Anurogryllus. Lastly, we examined the resonate-and-

fire (R&F) neuron, a single-neuron model with subthreshold

membrane oscillations that reproduced the resonant behavior

of T. cantans.34,38 This last model will allow us to examine how

changes in intracellular properties, rather than network proper-

ties, can produce the resonant song recognition of Anurogryllus.

Autocorrelation models produce resonant tuning but do

not match the Anurogryllus behavior

In an autocorrelation model, the song input is split into two path-

ways, one with a delay Dac, and one without a delay (Figure 2A).

Responses from the delayed and non-delayed pathways are

then multiplied in a coincidence detector that only responds

when the delayed and the non-delayed inputs overlap in time.

The model response is then taken as being proportional to the

average output of the coincidence detector over the song.

The autocorrelation model fitted to the Anurogryllus data pro-

duces resonant responsepeaks forpulse ratesat integer fractions,

but not atmultiples, of the delayDac (Figures 2B and 2C). The fitted

value of Dac = 17ms corresponds to 2Ts, the peak at twice the

pulseperiod in thebehavioraldata (Figure1E).Coincidenceoccurs

ifnT = Dac, leading to resonant peaks at periods that are fractions

of thedelayT = Dac=n (or atpulse rates f = n=Dac) (Figures2Eand

2F). Thus, resonant peaks in the autocorrelation model arise at

even and odd fractions of Dac and coincide with Ts and 2Ts. How-

ever, the behavior only exhibits responses at even fractions ofDac.

The lack of peaks at odd fractions ofDac in Anurogryllus renders a

pure autocorrelation-based mechanism for song recognition un-

likely (Figure 1E).

Similar to the period tuning, the DC tuning of the fitted autocor-

relation also does not match the behavioral data: The output of

the autocorrelation model increases linearly with DC (Figure 2D),

with maximal responses for constant tones without a pause (DC

100%). By contrast, Anurogryllus exhibits complex DC tuning

with multiple peaks and, importantly, does not respond well to

pulse trains with very high DCs (Figure 1E). The DC bias in the

autocorrelation model arises because songs with longer pulses

and shorter pauses are more likely to produce coincidence for

any given delay (Figures 2F, 2G, 2H).

In sum, the autocorrelation model demonstrates that a delay is

sufficient to produce resonance. However, autocorrelation alone
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Figure 2. An autocorrelation model pro-

duces resonant tuning

(A) In the autocorrelation model, a non-delayed

(blue) and delayed (orange) copy of the stimulus

aremultiplied in a coincidence detector (gray). The

output of the coincidence detector is integrated

over the stimulus to predict the model response.

The example traces show coincidence for a song

with a pulse period that equals the delay Dac.

(B) PPF for the autocorrelation model fitted to the

preference data in 1C. Predicted response values

are coded in greyscale (see color bar). Colored

lines correspond to the DC and period transects

shown in C and D (see legend).

(C) Period tuning of the autocorrelation model for

different DCs (see legend in B). Resonant peaks

arise at even and odd fractions of the delay

parameter Dacz2Ts. Vertical lines indicate the

pulse period transects shown in B.

(D) DC tuning for three different pulse periods (see

legend in B), corresponding to Ts=2, TS, and 2T .

DC tuning is high-pass for all periods.

(E) Response traces from the autocorrelation

model for songs with different periods (fractions

and multiples of Ts) and a DC of 33%. Resonant

peaks arise from coincidence at integer fractions

(e.g., 1Dac=2 = 2Ts=3) but not at multiples

(2Dac = 4Ts) of the delay parameter (stimulus–

blue, delayed stimulus–orange, response–grey,

see legend to the right).

(F) Pulse rate tuning given by the integral of the

stimulus (blue), the delayed stimulus (orange), and

the response (gray) at 33% DC. Response peaks

arise at integer multiples and fractions of Dac. Dots

indicate pulse patterns shown in E. Vertical lines

indicate the song periods shown in D.

(G and H) Response traces for different DCs (25,

50, 75%) (G) and DC tuning (H) at a non-resonant

pulse rate (1:5Ts = 12:9ms). Increasing the DC

leads to coincidence even at this non-resonant pulse rate. Same color code as in E, F. Gray boxes in E andG illustrate the stimulus parameters for which traces are

shown in the context of the PPF (compare B).
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is insufficient to qualitatively reproduce the pulse rate and DC

tuning found in Anurogryllus.

A rebound mechanism suppresses responses to pulse

trains with high duty cycles

The core computation for song recognition in the cricket

G. bimaculatus is an extension of the autocorrelation model28,37

(Figure 3A): As in the autocorrelation model, the song is split into

a delayed and a non-delayed path. The non-delayed path is then

sign-inverted and filtered to produce transient responses at the

end of each pulse, to mimic a post-inhibitory rebound. The

rebound model produces outputs only when the delayed input

coincides with the rebound.

The pulse rate tuning of the rebound model resembles that of

the autocorrelation model, with resonant peaks arising close to

even and odd fractions of the delay Drb (Figures 3B and 3C,

compare Figure 2C). However, the fitted value of Drb = 23ms

matches neither multiples nor fractions of Ts. This is because

the rebound is produced at the end of each pulse and coinci-

dence therefore occurs if n$T +D = Drb, where D is the pulse

duration (Figures 3E and 3F). Resonant peaks occur at T =

ðDrb �DÞ=n or f = n=ðDrb � DÞ, close to even and odd fractions
of 2Ts (Figures 3A, 3B, 3E, 3F). The responses to odd fractions of

Ts in the rebound model are not found in the behavioral data.

Therefore, a pure rebound mechanism is unlikely to produce

the Anurogryllus behavior.

The DC tuning of the rebound model is band-pass, with

reduced but non-zero responses for continuous tones

(high DC) (Figures 3D and 3G). This band-pass tuning arises

from two opposing processes: On the one hand, responses in-

crease with pulse duration up to a point set by the duration of

the inhibitory filter lobe that produces the rebound. This is

because the rebound is strongest if the pulse is long enough

to saturate the rebound, which happens when it fully overlaps

the inhibitory filter lobe (Figure 3I). However, a further increase

in pulse duration at a fixed pulse period shortens the pauses

and for short pauses, the rebound is interrupted by the next

pulse (Figures 3G and 3J).

Overall, the rebound model fails to reproduce the qualitative

features of the Anurogryllus responses. Period tuning exhibits

excess peaks at odd fractions of the pulse rate as in the autocor-

relation model. While the DC tuning is band-pass, as in Anurog-

ryllus, responses to constant tones are still evident and the
iScience 28, 111695, February 21, 2025 5
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Figure 3. Tuning for pulse rate and duty cy-

cle in the rebound model fitted to Anuror-

gryllus behavior

(A) The rebound model is an extension of the

autocorrelation model. The non-delayed branch

(purple) is sign-inverted (blunt ended arrow in-

dicates inhibition) and filtered by a bi-phasic filter

to produce transient responses at pulse offsets

that mimic a post-inhibitory rebound. The positive

part of the rebound and the delayed stimulus are

then combined through coincidence detection.

(B) PPF for the rebound model fitted to the pref-

erence data in Figure 1C. Predicted response

values are color coded (see color bar). Colored

lines correspond to the DC and period transects

shown in C and D (see legend).

(C) Period tuning of the rebound model for

different DCs (see legend in C). Vertical lines

correspond to the pulse period transects shown

in B.

(D) DC tuning for three different pulse periods (see

legend in C). DC tuning is high-pass for short pe-

riods (Ts=2, yellow) and band-pass for intermedi-

ate and long periods (Ts (orange), 2Ts (red)).

(E) Response traces of the rebound model for

songs with different periods (fractions and multi-

ples of Ts) and a DC of 33% (stimulus–blue,

rebound response–pink, delayed stimulus–

orange, response–grey, see legend to the right).

(F) Pulse rate tuning given by the integral of the

stimulus. Dots indicate periods shown in E.

(G andH) Response traces for a DC sweep (33, 67,

95%) (G) and DC tuning (H) at a non-resonant

period of 1:5Ts = 12:9ms. Even at this non-

resonant period, responses increase with DC,

consistent with the broadening of the response

peaks with DC in B and C. Responses decrease at

very high DCs (short pauses), because the

rebound is truncated by the next pulse (see J).

Same color scheme as in E, F.

(I and J) Integral of the rebound as a function of

pulse duration (I) and pause (J). Dots in the curves

(bottom) indicate example traces shown on top of

each curve. A minimum pulse duration and pause

duration (black lines) are required for the rebound

to fully develop. At short pauses the rebound is interrupted by the following pulse (J). Gray boxes in E and G illustrate the stimulus parameters for which traces are

shown in the context of the PPF (compare B).
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characteristic pattern with split peaks is missing. This failure to

reproduce the Anurogryllus behavior is surprising given that

the rebound constitutes the coremechanism of song recognition

in crickets. However, we will show below that a rebound mech-

anism can produce the Anurogryllus behavior when combined

with other computations found in the full network.

The resonate and fire model is a simple model that

qualitatively matches the Anurogryllus behavior best

As the last simple model, we fitted a resonate-and-fire (R&F)

model to the Anurogryllus data. In contrast to the autocorrelation

and rebound models, which are network models, the R&F model

is a single neuron model that consists of coupled current and

voltage-like variables (Figure 4A).38 This coupling leads to

input-driven damped oscillations with a characteristic frequency

frf . Inputs that arrive at positive/negative phases of the oscillation

amplify/suppress this oscillation. If the voltage reaches a
6 iScience 28, 111695, February 21, 2025
threshold, a spike is elicited and the current and voltage are

reset. The R&F model can produce resonant behavior if the

damping is weak and it was previously used to reproduce the

resonant song recognition from T. cantans.12,34

The R&F model fitted to Anurogryllus data is weakly damped

(less than 2% of the stimulus gain). It has a characteristic fre-

quency frf = 109 Hz, which translates to Trf = 9:2ms—close

to the pulse period of the Anurogryllus song. The R&F responds

strongly if the incoming pulses hit the intrinsic oscillation during

excitatory phases and resonant peaks therefore arise at

multiples of the period n$Trf = n=frf . Thus, contrary to the auto-

correlation and rebound models, the R&F model responds only

to multiples (subharmonics), but not to fractions of Trf (har-

monics) (Figures 4B and 4C). In the R&F, responses to fractions

of Trf are suppressed, because inputs faster than Trf will arrive

not only during the excitatory but also during the inhibitory phase
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Figure 4. Tuning for pulse rate and duty cycle in the resonate and fire model fitted to Anurogryllus behavior

(A) The resonate-and-fire (R&F) model is a spiking neuron model with bidirectionally coupled current (purple) and voltage-like (orange) variables. Inputs currents

trigger oscillations with a frequencyu. Inputs are excitatory during positive phases and inhibitory during negative phases of the oscillations. If the voltage exceeds

a threshold, a spike (gray) is elicited and the current and voltage are reset.

(B) Pulse-pause field (PPF) for the R&Fmodel fitted to Anurogryllus data. Colored lines correspond to the DC and period transects shown in C and D (see legend).

(C) Period tuning of the R&F model for different DCs. Resonant peaks arise at integer multiples of Ts. The response at 2Ts is attenuated for lower DCs, as in the

behavior. Vertical lines correspond to the periods shown in D.

(legend continued on next page)
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of the intrinsic oscillation, reducing the net drive to the spike

generator. By contrast, responses at multiples of Ts exist

because subsequent pulses will arrive during the excitatory

phase of the membrane oscillation (Figures 4E and 4F). The

R&F model reproduces the Anurogryllus responses at Ts and

2Ts and, apart from excess responses at higher multiples of Ts,

matches the behavior well.

The DC tuning of the R&F model is more complex than that of

the autocorrelation and rebound models. At Trf , the model re-

sponds with a single, broad peak to different DCs, whereas at

2Trf , two separate peaks—at high and low DCs—are visible

(Figures 4B and 4D). The peak at the higher DC is greater than

that at the lower DC, consistent with the Anurogryllus behavior.

With this DC tuning, the R&F model qualitatively matches the

Anurogryllus data best out of all models tested so far (Figure 1F).

Note that the R&F also produces peaks at 3Trf , but stimuli

covering these periods were not tested experimentally.

How does this complex DC tuning arise in the relatively simple

R&F model? In the model, inputs during the excitatory phase of

the membrane potential oscillation amplify the oscillation and

therefore elicit spiking responses, while inputs during the nega-

tive phase suppress the spiking responses. Songs with a pulse

period of Ts match the period of the membrane oscillation and

an input with a DC of 50% will produce the maximum output

because it covers only the excitatory phase of the oscillations

(Figures 1G and 1H). Shorter pulses (DC<50%) will produce

weaker voltage responses because they engage the excitatory

phase less, and longer pulses (DC>50%) will produce weaker

voltage responses because they extend into the inhibitory

phase. Pulse patterns with a pulse period of 2Ts—twice the

period of the oscillation—produce DC tuning with two broad

peaks—around DC 25% and around DC 75%—and no re-

sponses at DC 50% (Figures 1I and 1J). The responses at DC

50% are suppressed because the pulse covers one full period

of the oscillation, and therefore equally engages the excitatory

and the inhibitory phases of the oscillation, resulting in weak

spiking responses. Stimuli with smaller or larger DCs produce

stronger responses because more of the excitatory phases of

the oscillation are engaged. The peak at higher DCs is higher

than that at lower DCs because the pulse hits the excitatory

phase once per period for DCs below 50% and twice for DCs

above 50%,34 as in (Figure 4I).

Simple networkmodels, unlike the single neuronmodel,

fail to reproduce the behavioral period and duty cycle

characteristics

Overall, none of the simple models were able to fully reproduce

the Anurogryllus tuning. However, a single-neuron model—the

R&F model—came closest, suggesting that changes in single

neuron propertiesmight underlie the emergence of resonant tun-
(D) DC tuning for three different pulse periods. There is no peak for Ts=2. At Ts, t

(E) Response traces for the R&F model for songs with different periods (fractions

orange, spikes–grey, see legend). Membrane oscillations and responses are wea

(F) Pulse rate tuning at DC 33%. Shown are the integrals of the stimulus (blue)

variables were rectified before integration.

(G and I) Response traces for different DCs at Ts (G) and 2Ts (I).

(H and J) DC tuning at Ts (H) and 2Ts (J). Dots mark the stimuli shown in G and I. DC

the stimulus parameters for which traces are shown in the context of the PPF (co
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ing in Anurogryllus (Figure 4). By contrast, simple delay-based

models (autocorrelation and rebound) are insufficient to recover

the Anurogryllus tuning (Figures 2 and 3): The delay-based

models are resonant but they produce strong responses to

very short periods (fractions of Ts) and are unable to replicate

the DC tuning of Anurogryllus, in particular the double-peaked

DC tuning at 2Ts. Importantly, the failure of the rebound model,

which replicates the hypothesized core mechanism of song

recognition in crickets, challenges the mother network hypothe-

sis28,37). However, themother network, developed using electro-

physiological data from G. bimaculatus, contains additional

computations such as adaptation and feedforward inhibition.

We therefore fitted a model of the full network, previously devel-

oped in37 (Figure 5A), to the behavioral data from Anurogryllus to

test whether these additional computations can produce the

behavior.

The mother network can produce the resonant
phenotype
A computational model of the song recognition network in

crickets, that was originally constructed to reproduce electro-

physiological data from G. bimaculatus,37 was fitted to the

behavioral data from Anurogryllus females (Figure 1C, Table 3).

This model reproduced the Anurogryllus behavior (5A): Resonant

peaks at Ts and 2Ts, and DC tuning at 2Ts that is bimodal with a

preference for higher DCs. This supports the mother network hy-

pothesis—the network from G. bimaculatus can produce the

preference profiles from all cricket species examined so far

and could therefore constitute the shared network for song

recognition in crickets. How does the characteristic period and

DC tuning arise in the network? Above, we have shown that

the rebound mechanism at the core of the network is sufficient

to produce resonant responses but insufficient to produce the

DC tuning at 2Ts (Figure 3D). We therefore investigated where

in the network both response properties arise.

In the full network, LN3 is equivalent to the output of the sim-

ple rebound model as it is the coincidence detector that re-

ceives input from the rebound neuron LN5 and a delayed input

from AN1. Accordingly, resonant tuning with responses at mul-

tiple periods in the network arises in LN3 (Figure 5E). Indeed,

the effective delay between the two inputs to LN3 is 25.3 ms,

similar to the delay Drb = 23ms found for the simple rebound

model.

The DC tuning of Anurogryllus arises in the last neuron of the full

network, LN4 (Figure 5E). LN4 receives excitatory input from the

coincidence detector LN3 and feedforward inhibition from LN2.

The inhibition from LN2 shapes the DC tuning by suppressing re-

sponses to song with a DC of 50% at 2Ts (Figure 5F): At DCs

around 50%, the excitatory input from LN3 is ineffectual because
he DC tuning is band-pass. At 2Ts, the DC tuning is bimodal, as in the data.

and multiples of Ts) and a DC of 33% (stimulus–blue, current–pink, voltage–

k at fractions at Ts. Responses are strong at integer multiples of Ts.

and spiking response (gray). The current-like (pink) and voltage-like (orange)

tuning is unimodal at Ts and bimodal at 2Ts. Gray boxes in E, G, and I illustrate

mpare B).



A

B C

D

E

F

Figure 5. A model of the full song recogni-

tion network in crickets reproduces the

resonant tuning of Anurogryllus

(A) Schematic of the full 5-neuron network and

internal connections. Pointy and blunt ended ar-

rows indicate excitation and inhibition, respec-

tively. Delay (AN1-LN3), rebound (LN5), and

coincidence (LN3) are computations of the core

rebound mechanism (Figure 3). Feedforward in-

hibition from LN2 to LN4 is crucial for reproducing

DC tuning.

(B) The resonant phenotype of Anurogryllus

recovered with the five neuron model. Colored

lines correspond to the period and DC transects

in D and E.

(C) Period tuning at 33%, 50%, and 80% DC,

which each reveal the relative strength of the

peaks at Ts=2, Ts, and 2Ts. There is no response

at the shortest period (Ts=2—yellow). At the

period of male song (Ts—orange), DC tuning is

band-pass. At the 17 ms period (2Ts—red), DC

tuning is biphasic, as observed in the behavioral

data. Vertical lines correspond to the DCs shown

in C.

(D) DC tuning for the different periods labeled in B,

which shows that each peak has unique DC

preferences. Compared with the behavioral data

in Figure 1which shows that Anurogryllus similarly

demonstrates a bandpass preference around the

male calling song Ts, and a preference for high

DCs for the 2Ts peak.

(E) Response profiles of the five neurons in the

network.

(F) Response traces for three songs (blue) along

the 2Ts period transect at different DCs, showing

the interaction of the excitatory coincidence detection output from LN3 (red) and the inhibition from LN2 (blue) to produce the output response in LN4 (green). The

gray box in F illustrates the stimulus parameters for which traces are shown in the context of the PPF (compare B). See also Fig. S2.
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it overlaps with the strong inhibition from LN2. For higher and

lower DCs, inhibition is less potent and hence the output from

coincidence detection prevails and LN4 responds. At lower

DCs, inhibition is weak and offset in time from the excitatory input

from LN3. At higher DCs, the excitation from LN3 is stronger and

arrives slightly later than the inhibition. In summary, the Anurogryl-

lus tuning arises serially, through two computations in the network

model: Rebound and coincidence detection in LN3 shape the

period tuning and feedforward inhibition from LN2 suppresses re-

sponses at wrong periods and shapes the DC tuning.

To confirm that a mechanism comprised of rebounds and

feedforward inhibition is sufficient to reproduce the Anurogryllus

behavior, we extended the simple rebound model (Figure 3) with

delayed feedforward inhibition (Figure S2A). We used the param-

eters of the simple rebound model (Figure 3) and only fitted the

delay and filter properties of the LN2-like input to LN4 (see

Methods). This model is sufficient to reproduce the resonant

period tuning (Fig. S2C) and the bimodal DC tuning of Anurogryl-

lus (Fig. S2B–D). The DC tuning arises from the timing of excit-

atory and inhibitory inputs to LN4 (Fig. S2E), not from their

strengths (Fig. S2F). Responses to a DC of 50% are suppressed

in LN4 because excitation and inhibition arrive at the same time

(Fig. S2E). For shorter/longer DCs, inhibition arrives too early/late

to cancel the excitation.
Nonlinear computations can accelerate the divergence
of song preferences through saltatory evolution
Resonant, multi-peaked preference functions as found in Anu-

rogryllus (Figures 1C–1E) may impair species discrimination,

because they produce responses not only to the period of the

conspecific song but also to its multiples or fractions. However,

resonant recognition mechanisms could drive the fast co-diver-

gence of song structure and song preference between sister

species: According to the standard model of evolution, novel

phenotypes evolve through an accumulation of small genetic

changes that induce small phenotypic changes. However, an

alternative, saltatory, model poses that nonlinearities in themap-

ping from genotype to phenotype can drive sudden large pheno-

typic changes.39 Evolutionary developmental biology has shown

that strongly nonlinear developmental programs can give rise to

morphological innovations from small genetic changes11—so-

called morphological monsters. Resonant song recognition

with responses to disjoint sets of songs is also the result of a

highly nonlinear mapping from network parameters to behavior.

If simple mechanisms existed to isolate individual resonant

peaks, then behavioral preferences could jump between these

peaks, resulting in sudden large changes in the female prefer-

ence that will drive large changes in male song and a rapid isola-

tion between sister species.
iScience 28, 111695, February 21, 2025 9



Table 3. Parameters of the 5 neuron "mother network" model fitted to reproduce the Anurogryllus preference function

Cell Component Parameters

AN1 Filter excitatory lobe (Gaussian) width s = 3.88, duration =

7.59 ms, input delay = 2.26 ms

Filter inhibitory lobe (Gaussian) width s = 3.81, gain g = 0.87,

duration 293.04 ms

Nonlinearity (Sigmoidal) slope = 10.33, shift = 0.62,

gain = 1.19, baseline = �0.29

Adaptation (Divisive normalization) timescale t =

9999.93 ms, strength w = 85.75, offset x0 =

1

LN2 Input from AN1M Delay = 7.59 ms, gain = 1.93

Filter excitatory lobe (Gaussian) width s = 9.76, duration =

11.87 ms, gain = 0.59

Filter inhibitory lobe (Exponential) decay t = 15.87 ms, duration

N = 1000 ms

Nonlinearity (Rectifying) threshold = 0, gain = 4.22

LN5 Input from LN2 Delay = 13.13 ms, gain = 0.43

Postsynaptic filter (Differentiated Gaussian) width duration N =

8.94 ms, gain of the excitatory lobe = 0.41

Postsynaptic nonlinearity (Rectifying) threshold = 0, gain = 0.57

Rebound filter excitatory lobe (Gaussian) width t = 0.02, duration =

5.18 ms, gain = �0.007

Rebound filter inhibitory lobe (Exponential) decay t = 17.29ms, gain = 6.5

duration N = 1000 ms

Nonlinearity (Rectifying) threshold = 0, gain = 0.006

LN3 Input from AN1 Delay = 16.59 ms, gain = 0.65

Input from LN5 Delay = 9.67 ms, gain = 43.73

Postsynaptic nonlinearity (Rectifying) threshold = 0.24, gain = 6.82

Adaptation (Divisive normalization) timescale t =

1463.98 ms, strength w = 0.16

Nonlinearity (Rectifying) threshold = 5.1, gain = 3.51

LN4 Input from LN2 Delay = 11.44 ms, gain = �58.26

Input from LN3 Delay = 7.15 ms, gain = 3.75

Nonlinearity (Rectifying) threshold = �0.003, gain = 6.82
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Spike-frequency adaptation (SFA) is one mechanism that

can isolate individual peaks from a resonant preference func-

tion: SFA is ubiquitous in the nervous system and is also found

in the song recognition network of G. bimaculatus.28,29,37 SFA

in combination with the low-pass properties of the neuronal

cell membrane results in a band-pass filter that can be tuned

by changing the time constants of the membrane or of the

adaptation current.40,41 We have implemented a simple

proof-of-principle model to illustrate that SFA can isolate indi-

vidual peaks from a resonant response field (Figures 6B–6F,

Table 4). In the example, changes in the membrane time con-

stant of an adapting neuron can change the relative ampli-

tudes of the individual peaks and thus hide or reveal individual

peaks without creating intermediate ones. This will exert se-

lection pressure on the male song to jump to the new

larger peak of the female preference function. SFA could

thus be a mechanism through which acoustic communication

evolves in a saltatory manner: Not by the gradual shifting of

female preference and male songs but by jumping of the pref-
10 iScience 28, 111695, February 21, 2025
erences and songs between relatively fixed resonant peaks

(Figure 6A).

Direct evidence for this hypothesis is difficult to obtain as data

on female song preference from other Anurogryllus species does

not exist. However, given that female preference and male song

are hypothesized to co-evolve and typically do so in

crickets,42–47 song data could be used as indirect support of

our hypothesis. Under the hypothesis, the pulse periods ofmales

from different Anurogryllus species should be close to multiples

or fractions of each other. While song data from the genus Anu-

rogryllus is scarce we did find information on the songs of six

other Anurogryllus species (Table 5), and that data is consistent

with our hypothesis (Figure 6G). The distribution of song periods

of all seven species is trimodal with the modes at periods of 7.2,

13.4, and 22.8ms, close to integermultiples of each other. This is

consistent with songs changing in integer steps along resonant

peaks. In addition, the first two modes at 7.2 and 13.4ms are

close to the resonant bands of the A. muticus preference func-

tion (compare Figure 1D), with 45% of the song data overlapping
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Figure 6. Resonances enable the saltatory evolution of song preferences

(A) Evolution of the period preference (top to bottom) in a population under a gradual (left) and saltatory (right) mode. Under a gradual mode, small changes in the

preference lead to a shift of the preference over time. Under a saltatory mode, the preference function of individuals jumps to a new peak and that new peak gets

fixated without intermediates.

(B) Structure of the rebound model with adaptation. The non-integrated output of the rebound model from Figure 3 was used to drive a leaky integrate and fire

neuron with an adaptation current (LIFAC). The spike output of the LIFAC is then integrated to yield a value proportional to the phonotaxis. A rectifying nonlinearity

(relu) is then used to further sharpen the tuning for the song.

(C) PPF of the reboundmodel with resonant peaks used as the input to the LIFAC (same as Figure 3C). The two resonant peaks atz9ms andz 17ms are shown

as thin black anti-diagonal lines. The thicker black diagonal line shows the transect at a DC of 66% shown in F.

(D and E) PPFs of the rebound-and-LIFACmodel. The resonant peaks atz9ms andz17ms (thin black lines) were isolated by setting membrane time constants

tm to 8.6 (D) and 12.2 m (E), respectively. The orange and red diagonal lines correspond to the transects at a DC of 66% shown in F.

(F) Period tuning of the models in B–D for a transect through the PPF at a DC of 66%.

(G) Distribution of song periods for seven Anurogryllus species. The gray shaded regions depict the responses of A. muticus females to the period of the male

song (Ts) and to twice that period (2Ts) (cf. Figures 1C and 1D).

(H) Overlap between songs from the 7 species and the resonant bands in the preference function ofA. muticus females (gray bands in G) in the data (overlap 45%,

black line) and under a random uniform model (gray histogram, 100,000 random samples, average overlap 15%). The observed overlap is unlikely to have arisen

from that model (p< 10� 12).
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with the resonant bands from A. muticus females. Under a uni-

form random model, the expected overlap is 15± 4% and the

observed distribution of songs is thus unlikely to have arisen

by chance (p< 10� 12, Figure 6H). While this preliminary analysis

does not provide proof, the results are consistent with the hy-

pothesis that song preference and song structure may develop

in a saltatory manner by jumping between more or less fixed

resonant peaks inAnurogryllus. In the future, amore comprehen-

sive survey of male song and female preference in different Anu-

rogryllus species is required to further test the hypothesis.

DISCUSSION

In this article, we investigated the consequences of the multi-

peaked song recognition phenotype of Anurogryllus for the evo-

lution of acoustic communication among crickets. Anurogryllus

females respond to three different pulse patterns: pulse patterns
matching the period of the male song but also to patterns with

twice the period and low or high duty cycle (Figure 1). Using

computational modeling, we tested whether this unusual recog-

nition phenotype necessitates a novel recognition mechanism or

if the hypothesized shared mechanism observed in other cricket

species suffices.

First, to identify elemental computations required for resonant

song recognition, we tested simple delay and filter-based

network models, alongside a single-neuron model with resonant

membrane properties (Figures 2, 3, and 4). While each model

could resonate (produce responses with multiple peaks), it was

the resonate-and-fire single-neuron model that best matched

the tuning of Anurogryllus for both period and DC. That a sin-

gle-neuron model qualitatively matches the behavior suggests

that changes in intracellular properties capable of inducing oscil-

lations of the membrane potential could underlie the resonant

song recognition in Anurogryllus.
iScience 28, 111695, February 21, 2025 11



Table 4. Parameters of the model with spike-frequency

adaptation

Period Parameter name Parameter value

Shared Spike Refractory Period tref 1 m

Adaptation Time Constant tada 5 m

Adaptation Strength a 10 mV

Spike Threshold Vthres 0.5 mV

4 m Membrane Time Constant tm 4 m

Threshold qrelu 125 spikes

8 m Membrane Time Constant tm 8.8 m

Threshold qrelu 72 spikes

16 m Membrane Time Constant tm 12 m

Threshold qrelu 0 spikes

Resonant peaks at 4, 8, and 16 ms are isolated by adjusting the mem-

brane time constant, tm, and the threshold of the rectifying linear function,

qrelu.

Table 5. Song periods and their distribution from seven

Anurogryllus species

Species

Pulse period

(mean ± std)

Sample

Size (N) Source

A. muticus 8.5 ± 0.3 ms 8 Erregger et al.36

A. toledopizai 22.8 ± 0.47 ms 14 Red€u & Zefa48

A. patos 7.2 ± 0.22 ms 6 Red€u & Zefa48

A. celerinictus 5.8 ± ams 23 Walker49

A. arboreus 13.5 ± ams 19 Walker49

A. nerthus 14.08 ± ams unknown Walker50

A. amolgos 12.65 ± ams unknown Walker50

aindicates that this statistic was not reported in the source literature.
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Critically, we found that a pure rebound mechanism, the core

computation of the hypothesized shared mechanism for song

recognition in crickets, is insufficient to reproduce the tuning of

Anurogryllus and that additional computations present in the

shared network are necessary (Figure 5): The core reboundmech-

anism gives rise only to the resonant period tuning but not the DC

tuning, castingdoubton themothernetworkhypothesis.However,

the addition of feedforward inhibition, present in the full model,

recovered the DC tuning profile (Fig. S2). In G. bimaculatus, the

cricket species in which the network was described, feedforward

inhibition primarily served to refine period tuning,28 as no reso-

nances appear at the coincidence detection stage of the network

in this case. In Anurogryllus, it appears to have been coopted to

modulate DC tuning by attenuating responses to intermediate

DCs. This is in agreement with the fitted mother network model,

in which the resonant response arises in two steps: The

rebound-based mechanism at the core of the network shapes

the period tuning, while feedforward inhibition shapes the DC tun-

ing. Importantly, in the original network, the feedforward inhibition

only sharpens the period tuning, suggesting that this computation

can be re-used in Anurogryllus for another function. Overall, our

study shows how novel behaviors can arise from the modification

of existing intracellular and network computations.

Mechanisms of resonant song recognition in
Anurogryllus
In the absence of physiological recordings, computational

modeling can be used to constrain hypotheses about the recog-

nition mechanism of Anurogryllus. Here, we used two ap-

proaches: 1) Minimal models of networks and single-neurons,

to identify the computations required to produce the Anurogryl-

lus tuning, and 2) a complex network model based on the song

recognition network from another species, G. bimaculatus, to

test the potential of that network to produce resonant behavior.

We identified two mechanisms that can give rise to the resonant

song recognition in Anurogryllus: A cell-intrinsic mechanism

based on oscillatory membrane properties (Figure 4). And a

combination of two network mechanisms: rebound and feedfor-

ward inhibition (Figure 5 and S2).
12 iScience 28, 111695, February 21, 2025
The resonate and fire neuron, a single-neuron model that was

previously used to reproduce resonant song recognition in a

katydid34 qualitatively reproduced the pulse rate and DC tuning

of Anurogryllus. It produced responses to Ts and 2Ts and ex-

hibited bi-modal DC tuning at 2Ts (Figure 4). Off-target responses

in the model for longer periods could be suppressed by additional

computations such as a high-pass filter, for instance via adapta-

tion, a computation that is ubiquitous in the mother network.33,41

The resonant membrane properties could arise by changing the

expression levels of specific ion channels in any of the neurons

of the mother network, for instance, voltage-gated calcium (CaV)

or potassium (KCNQ, HCN) channels.51

We also found that the rebound mechanism in the mother

network alone was not sufficient to produce the tuning of Anu-

rogryllus (Figure 3). However, combining the rebound with feed-

forward inhibition recreates the period and DC tuning (Fig. S2). In

the full network model (Figures 5A and 5B), these computations

arise in different neurons of the network: First, the rebound pro-

duced by LN5 is combined with delayed excitation from AN1 in

the coincidence detector LN3 to produce the resonant period

tuning. Then, feedforward inhibition from LN2 shapes the DC

tuning in LN4. Crucial for tuning the network are the response de-

lays: from AN1 onto LN3 to tune the preferred periods37 and from

LN2 onto LN4 to tune the DC responses (Fig. S2E, F). Ultimately,

determiningwhich of the two proposedmechanisms—single cell

or network—generates the resonant behavior of Anurogryllus will

require intracellular recordings that detect membrane oscilla-

tions and assess response delays.

Resonances are rare because they are selected against,
or because they have been missed in experiments
Our analysis of the simple models revealed that resonances can

arise easily from common mechanisms such as delays or mem-

brane oscillations (Figures 2, 3, and 4). However, multi-peaked

response profiles appear to be rare.12 This may reflect selection

against resonant tuning, because resonances broaden the fe-

male tuning to regions that fall outside of the male calling song,

leading to the potential misidentification of mating partners.

While multi-peaked tuning can still enable mate recognition if

other signalers do not sing at the resonant off-target peaks,52 it

is likely that these resonances are suppressed in many pattern

recognition networks, for instance, through spike-frequency

adaptation (Figures 6B–6F).
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However, multi-peaked responses might also be underre-

ported, since their detection requires a comprehensive and

systematic sampling of the stimulus space when quantifying

female preferences. Future playback experiments in crickets

should therefore be designed to ensure the detection of reso-

nances: Stimuli should not only densely sample different pe-

riods but should also do so at multiple DCs. For instance, a

stimulus set that densely samples pulse periods at a DC of

50% would have missed the resonant peaks at twice the

song period in Anurogryllus and T. cantans (Figures 1G and

1H). A characterization of the DC tuning also helps to differen-

tiate between resonant mechanisms (Figures 2, 3, and 4): Only

the R&F model produces bimodal DC tuning at 2Ts, while

autocorrelation and rebound mechanisms produce unimodal

DC tuning. Sweep or chirp stimuli commonly used in electro-

physiology have a changing pulse rate or period but are not

sufficient for discriminating models since these stimuli have

a constant DC.53 Similarly, the presence or absence of re-

sponses to odd and even multiples or fractions of the song

period can disambiguate between different mechanisms (Fig-

ures 2, 3, and 4): The R&F model responds only to even mul-

tiples of the model’s characteristic period, while the simple

delay-based models respond to both even and odd fractions.

However, an interpretation of such experiments is compli-

cated by the fact that the behavioral preference is the

outcome of multiple computations, in the case of Anurogryllus

possibly of a rebound mechanism combined with feedforward

inhibition (Fig. S2).

Resonant song recognition and the evolution of acoustic
communication in crickets
Overall, our computational approach revealed the capacity of

neural networks for change: The song recognition network

described in G. bimaculatus consists of a set of elementary

computations—rebounds, coincidence detection, adaptation,

feedforward inhibition—that can give rise to a rich set of

recognition behaviors. This network has the capacity to pro-

duce all recognition types known in crickets: For pulse pause,

pulse period, DC, and even multi-peaked resonant tuning of

Anurogryllus. This network could therefore serve as a mother

network, that gives rise to the full diversity of song recognition

in crickets. That even a small network, consisting of only 5

neurons can produce diverse behaviors highlights the enor-

mous potential of neural networks to produce evolutionary

novel phenotypes.

While simple models of the core rebound, delay, and coinci-

dence detection mechanism only partially recovered the charac-

teristics of the resonant Anurogryllus behavior, insights from the

full model revealed that the function of the pulse recognition

network in crickets might include additional selectivity for duty

cycle via feedforward inhibition, the inclusion of which enabled

the simple rebound model to replicate the resonant pattern.

These results further suggest that the function of the pulse

pattern recognition network in crickets cannot be conceptual-

ized merely as a rate detector, but that it may additionally select

for the duty cycle characteristics of incoming song, necessitating

the inclusion of feedforward inhibition in even a minimal model

for song feature recognition networks in crickets (Figure S2).
More generally, the capacity of neuronal networks to drive evolu-

tionary change stems in part from the multitude of nonlinear

computations at the network and single-neuron level, which

can be coopted to produce new behaviors.

Nonlinear computations can drive saltatory behavioral
evolution
The resonant mechanism for song recognition in crickets studied

here is just one example of the many nonlinear computations

inherent in the neuronal networks that drive behavior. However,

they help illustrate a different view on the evolution of behavior:

While the standard model of evolution, gradualism, assumes

phenotypic change through the accumulation of small adaptive

changes, an alternative view poses that large, saltatory change

can drive rapid phenotypic change that is then fixed through se-

lection.10,39 This saltatory model is supported by the existence of

so-called "morphological monsters," such as flies with legs

instead of antennae, which are a symptom of the highly nonlinear

genetic networks and programs that drive morphological devel-

opment.11 We propose that the highly nonlinear neuronal com-

putations inherent in the brain can also drive saltatory behavioral

evolution, and thus behavioral monsters: Animals with highly un-

usual behaviors. A saltatory mode of evolution may be most ad-

vantageous if rapid behavioral changes are adaptive, for

instance in traits that support species evolution. The potentially

multi-peaked recognition phenotypes driven by resonant mech-

anisms can be a trait that allows saltatory changes in song

recognition. As one example, we have shown that spike-fre-

quency adaptation after a resonant recognition network can sup-

port this scenario (Figures 6B–6F).40,41 Changes in adaptation

parameters can suppress one resonant peak and amplify

another, driving a switch to a novel preferred pulse period

without intermediates (Figure 6A). Following the change in fe-

male preference will force male songs to change drastically as

well. It is an open question what nonlinear mechanisms might

support the rapid—and possibly saltatory—change of song

pattern in the song pattern generators. However, the same

mechanism at work in the female recognition network that gives

rise to resonances—post-inhibitory rebounds, response delays,

adaptation, inhibition—can also be found in the song pattern

generators.54–56

While the idea of saltatory evolution is theoretically intriguing,

it also generates testable hypotheses on the statistics of male

song patterns and female song preference within a species

group. Assuming that the male’s pulse pattern and the female

preference co-evolve,42–46 saltatory evolution by jumping be-

tween fixed resonant peaks would lead to multimodal distribu-

tions of song parameters and song preferences in closely

related species. While by no means ultimate since it is based

on a small set of song data, our preliminary finding that the

songs of seven species in the genus Anurogryllus are trimodally

distributed is consistent with this prediction. To further test our

hypothesis, songs from more species under the consideration

of phylogenetic data are required. As is female preference

data, which would show that females from different species

also show either multi-peaked responses such as Anurogryllus

(Figures 1C and 1D) or fall on a small number of peaks. In addi-

tion, if a species is "caught in the act" of transitioning from one
iScience 28, 111695, February 21, 2025 13
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peak to another, we would expect bimodal distributions of fe-

male preferences and/or male song parameters.

Given the existence of nonlinear computations in neural net-

works, the potential for saltatory behavioral evolution exists in

every system and it might drive evolution whenever sudden

phenotypic changes are adaptive.

Limitations of the study
Our conclusions are based on computational modeling of behav-

ioral data from a single species. Determining the song recogni-

tion mechanism in A. muticuswill require intracellular recordings

that detect membrane oscillations or assess response delays. In

addition, a more comprehensive survey of male song and female

preference in different Anurogryllus species is required to test

whether resonant song recognition is common in the genus

and to provide proof of saltatory evolution.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

A. muticus song data Erregger et al., 201736 N.A.

A. toledopezai and A. patos song data Red€u et al., 201748 N.A.

A. celerinitctus and A. arboreus song data Walker, 197349 https://orthsoc.org/sina/491a.htm,

https://orthsoc.org/sina/492a.htm

A. nerthus and A. amolgos song data Walker, 201550 https://ufdc.ufl.edu/IR00007240/00002/downloads,

https://ufdc.ufl.edu/IR00007240/00007/downloads

Experimental models: Organisms/strains

Anurogryllus muticus Erregger et al. 201857 N.A.

Software and algorithms

Code for running the computational models https://doi.org/10.5281/

zenodo.14296669

https://github.com/janclemenslab/

anurogryllus-resonance

LabVIEW 7 National Instruments https://www.ni.com/en.html

MetPy Unidata https://github.com/Unidata/MetPy
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Behavioral experiments were performed with Anurogryllus muticus from the same colony as used in.57 The progeny of individuals

caught on Barro Colorado Island in Panama were reared to adulthood at the Department of Zoology at the University of Graz in

Austria and held at 25–28�C with ad libitum food and water. Starting with the second or third instar, individuals were separated

from the colony and placed in individual plastic boxes.

METHOD DETAILS

Male song recording and analysis
Individuals were placed in an array of separate boxes (mean temperature 24.9 ± 1.0�C SD) for a duration of 16–24 hours. Each box

was equipped with a microphone and isolating foam to ensure acoustic isolation. Using customized software (LabVIEW 7, National

Instruments, Austin, TX, USA), the microphone (TCM 141 Conrad; Conrad Electronic, Germany) in each box was scanned for 800ms

at a time with a sampling rate of 100 kHz and a male was recorded for 20 s if it produced sound during that 800-ms interval.22 The

song carrier frequency was determined from the spectral peak of the raw waveform signal. For analysis of the temporal pattern, the

normalized envelope of the song signal was computed after signal rectification by squaring and low-pass filtering at 200 Hz (equiv-

alent to a temporal resolution of 2.5 ms). Temporal parameters such as pulse and pause duration were calculated when the envelope

crossed or fell below a threshold value at 10–15% of the signal envelope.

As a preliminary test of our hypothesis that resonance might drive saltatory evolution, we examined the pulse periods of calling

songs from seven more species of the genus Anurogryllus from the literature (Table 5). Aside from A. muticus, only A. toledopizai

and A. patos included individual specimen measurements. For each of the species for which which only one pulse period was re-

ported (A. celerinictus, arboreus, nerthus, amolgus), distributions of 10 songs were generated by sampling from a Gaussian with

the species’ pulse period as the mean and the standard deviation from A. muticus.

Together with the species with individual specimenmeasurements, we find that roughly 45%of these 68 songs fall within either the

Ts or 2Ts period harmonics of A. muticus (6:5%Ts % 9ms or 13:5%2Ts %17ms). To test whether this distribution of songs deviates

from a random uniform distribution we simulated 100,000 trials in which 68 random songs drawn were from a uniform distribution

between 0 and 40 ms and calculated for each of the 100,000 random distributions their overlap with the Ts or 2Ts harmonic bands

from A. muticus. The resulting distribution of 100,000 probabilities was then compared to the observed overlap of 45% and the prob-

ability of obtaining an overlap of 45% or greater was estimated by approximating the random distribution as a Gaussian to be

p< 10� 12.

Female preference functions
Female preference was tested using a trackball system as described in.22 Females, mounted to a metal rod, were placed on a hollow

Styrofoam sphere (diameter: 100 mm, weight: 1.2–1.8 g) supported by an air stream between two perpendicularly placed
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loudspeakers (Piezo Horntweeter PH8; Conrad Electronic) in a wooden box with sound absorbing foam. Each loudspeaker was cali-

brated with a Bruel and Kjaer 2231 sound level meter and a half-inch condenser microphone (Bruel and Kjaer 4133 relative to 0.02

mPa, fast reading) at the top of the sphere where the female cricket was placed during experiments.

Digitally stored sound signals were transmitted from a hard disk by a D/A-board (update rate: 100 kHz, PCI 6221; National Instru-

ments, Austin, TX, USA) to a digitally controlled attenuator (PA5; Tucker-Davis, Alachua, FL, USA), amplified (Raveland; Conrad Elec-

tronic) and broadcasted through the speakers. The longitudinal and lateral movements of the sphere were recorded by either a single

optical sensor (Agilent ADNS-2051; Agilent Technologies, Santa Clara, CA, USA) at the bottom of the half-sphere or by two sensors

(ADNS-5050; Avago Technologies, San Jose, CA, USA) with a focusing lens positioned laterally at an angle of 90.

A silent control was used to monitor baseline walking activity, and a continuous tone was used to control for motivation and selec-

tivity of female responses. At the beginning and the end of each test session, a species-specific, attractive song signal was presented

to control for possible changes in phonotactic motivation during a session. For each test signal, the lateral deviation of a female dur-

ing signal presentation for each of the two speakers was averaged and normalized with respect to the attractive control signal. The

resulting phonotactic scores were therefore typically between 0 (no orientation towards the sound signal) and 1 (strong orientation

towards the signal), although negative scores (orientation away from the signal) and scores higher than 1 (orientation towards signal

stronger compared to control stimulus) were possible. Test signals and controls were presented at 80 dB sound pressure level. All

tests included the four control stimuli (silent, continuous tone, and an attractive stimulus at the beginning and end of a test) and eight

test stimuli (total duration was 29 min per test), and were performed at 24�C.
Phonotaxis values were measured for 75 artificial pulse trains, split into 10 playlists. Each playlist was tested with 3-8 females and

the phonotaxis values for each stimulus were averaged over the females (Fig. S1). All stimulus parameters, phonotaxis values, and

number of animals are listed in a supplemental data file. From the 75 average phonotaxis values, we generated a two-dimensional

preference function using natural neighbor interpolation implemented in metpy (URL: https://github.com/Unidata/MetPy). The pref-

erence function covered pulse and pause durations between 0 and 20ms, with a resolution of 0.1ms. Negative phonotaxis values in

the interpolated preference functions were set to 0.

Modeling
Stimulus and response data

Song pulses were constructed as rectangular boxes with an amplitude of 1. While natural pulse trains in Anurogryllus last for many

seconds, themodels tested here have dynamics on the timescale of a few tens ofmilliseconds. To speed up simulations, we therefore

used pulse trains with a duration of 400ms and omitted onset and offset transients when translating the model output to predicted

phonotaxis (see below). The stimulus set contained pulse trains with all combinations of pulse and pause durations between 0–20ms

sampled on a grid with an interval of 0.5ms, totalling ð20=0:5Þ2 = 1600 stimuli. As the fitting target, we used the two-dimensional

preference function from Anurogryllus females obtained by interpolating the experimental phonotaxis values as described above,

but on a grid with a step size of 0.5ms.

Predicting phonotaxis score from model responses

The predicted phonotaxis score, p, is given by the average model response rðtÞ over the stimulus duration Ds, excluding the first 25

ms and the last 10ms to reduce the impact of response transients: p = 1=ðDs � 35msÞ RDs � 10ms
25ms rðtÞdt.

Model fitting

The models were fitted using the Nelder-Mead method implemented in scipy.optimize.minimize, by minimizing the mean-squared

error between the interpolated phonotaxis values from the data and the model response. If not stated otherwise, initial values for

all parameters were set using a vector of initial conditions chosen manually to speed up fitting. Fits were run multiple times from

slightly different initial conditions to avoid getting stuck in local minima. The presented parameter values are from models with the

lowest error. The model parameters for the simple models are listed in Table 2 and for the full network in Table 3. The code and pa-

rameters for running all models can be found at https://github.com/janclemenslab/anurogryllus-resonance.

Autocorrelation model

In the autocorrelation model (Fig. 2A), the stimulus sðtÞ is delayed by Dac, sDðtÞ = sðt � DacÞ. A coincidence detector then multiplies

sðtÞ and sDðtÞ and scales the result with a gain factor gac: rðtÞ = gac$sðtÞ$sDðtÞ. We did not add a nonlinearity to the output rðtÞ, like a

sigmoidal, prior or after integration, since it did not produce quantitatively different predictions during fitting. The autocorrelation

model was simulated with a resolution of 10 kHz.

Rebound model

The rebound model extends the autocorrelation model by inverting and filtering one of the two paths the stimulus takes before coin-

cidence detection to produce offset responses at the end of each pulse: sFðtÞ =
R T
0 � sðt � tÞ$hðtÞdt. The filter hðtÞ consists of two

lobes, defined as rectangular windows: An inhibitory lobe with negative gain gi and duration Ti, followed by an excitatory lobe with

positive gain ge and duration Te. The positive response components in sFðtÞ corresponding to the rebound are isolated using a recti-

fying linear function: sRðtÞ = fðsFðtÞÞ, where fðxÞ = 0 if x% 0, and fðxÞ = x if x > 0. The coincidence detector then multiplies sRðtÞ and
sDðtÞ: rðtÞ = sRðtÞ$sDðtÞ. The rebound model was simulated with a resolution of 4 kHz to accelerate the fitting process.

Rebound model with feed-forward inhibition

The reboundmodel with feed-forward inhibition extends the simple reboundmodel by including an additional inhibitory connection to

the basic rebound model following coincidence detection (See Fig S2A). The added inhibitory path from stimulus to output (LN4)
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contains a bi-phasic filter with rectangular negative and positive lobes (similar to the filter in the rebound model) and a delay. The

negative components of the output of the bi-phasic filter were then used as an inhibitory input to an LN4-like output neuron. The

LN4-like neuron combines the inputs from the coincidence detector and the feed-forward inhibitory paths. To obtain the predicted

phonotaxis value for a given stimulus, the output of the LN4-like neuron was passed through a rectifying linear function with threshold

qrelu = 0 and a linear gain grelu = 1 and then integrated. When fitting this model, the parameters of the simple rebound model fitted

previously were kept fixed and only the additional parameters for the feed-forward inhibition branch (the delay time and the gain and

duration of the inhibitory and excitatory lobe) were adjusted.

Resonate-and-fire neuron

The resonate-and-fire model was implemented following38:

dx

dt
= b � x � u � y +gs � sðtÞ

dy

dt
= u � x +b � y

where x is a current-like variable, y is a voltage-like variable, b is the damping factor, u is the intrinsic frequency, sðtÞ is the song input

and gs is the gain of the song input. If y exceeds the threshold ythreshold = 1, a spike with amplitude grb is elicited and current and

voltage are reset to xreset = 0 and yreset = 1:

y =

8<
:

x = xreset and y = yreset; ifyR ythreshold

y; otherwise

The differential equations were numerically integrated using the Euler method with a time step of 0.1ms.

Full model of the song recognition network in G. bimaculatus
To test whether the song recognition network from G. bimaculatus described in28 can reproduce the resonant behavior of Anurog-

ryllus, we used the model of the network from.33 This model was fitted to reproduce the response dynamics and the tuning of all neu-

rons in the network using electrophysiological recordings from G. bimaculatus for a large set of pulse train stimuli.28,42 The forty-five

parameters in the network model were fitted using the Nelder-Mead optimization algorithm, by minimizing the mean-square error

between experimental and predicted phototaxis values (see Table 3 for the fitted parameters) using the parameter values found

for G. bimaculatus as a start point. Several rounds of optimization were required to converge on the given parameter set, with

Gaussian-distributed noise added to all parameters at the start of the initial optimization rounds to avoid undesirable local minima.

Model fitting often yielded models that reproduced the tuning of Anurogryllus with only transient responses at the onset of the pulse

train. Given that Anurogryllus song lasts multiple seconds and elicits phonotaxis throughout, we deemed these solutions physiolog-

ically unrealistic. We therefore added the constraint that responses of AN1 in the model should spike throughout the stimulus for

pulse trains with conspecific parameters.

Modeling jumps between resonant peaks with spike-frequency adaptation

To demonstrate that individual resonant peaks can be isolated from a resonant response field, we added to the reboundmodel fitted

to the Anurogryllus data (Figure 3; Table 4) a leaky integrate and fire neuron with an adaptation current (LIFAC) using the code pub-

lished with.41 The LIFAC model is driven by the non-integrated output of the rebound model and acts as band-pass filter, because it

combines the low-pass properties of a cell membrane and high-pass properties from adaptation.40 The total spike output from the

LIFACmodel for each stimulus is passed through a rectifying linear functionwith threshold qrelu and a linear gain grelu = 1, to compute

the predicted phonotaxis value.

The LIFAC neuron responds to a current input I by increasing the membrane potential V fromwhich an adaptation current A is sub-

tracted:

tm
dV

dt
= � V + I � A

tada
dA

dt
= � A

with time constants of themembrane and of adaptation, tm and tada, respectively. If the voltage V reaches the spiking threshold Vthres,

a spike is elicited, and V is reset to Vreset and the adaptation current strength A is incremented by a:

V =

8<
:

Vreset and A = A+a; if VRVthres

V ; otherwise

Each spike initiates a refractory period tref , during which both V and A are fixed to their reset values.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed in Python using the SciPy statistics package. Details on determining the statistical significance of

the peaks in the behavioral preference profile can be found in the Supplemental information in S1. P-values for each peak were ob-

tained from a paired one-sided t-test. Details on the statistical methods used in our investigation of the saltatory evolution hypothesis

using other members of the Anurogryllus genus can be found in Figure 6.
e4 iScience 28, 111695, February 21, 2025


	ISCI111695_proof_v28i2.pdf
	Resonant song recognition and the evolution of acoustic communication in crickets
	Introduction
	Results
	Anurogryllus exhibits an unusual resonant recognition phenotype
	Simple models provide insight into the computational mechanisms of resonant tuning
	Autocorrelation models produce resonant tuning but do not match the Anurogryllus behavior
	A rebound mechanism suppresses responses to pulse trains with high duty cycles
	The resonate and fire model is a simple model that qualitatively matches the Anurogryllus behavior best
	Simple network models, unlike the single neuron model, fail to reproduce the behavioral period and duty cycle characteristics

	The mother network can produce the resonant phenotype
	Nonlinear computations can accelerate the divergence of song preferences through saltatory evolution

	Discussion
	Mechanisms of resonant song recognition in Anurogryllus
	Resonances are rare because they are selected against, or because they have been missed in experiments
	Resonant song recognition and the evolution of acoustic communication in crickets
	Nonlinear computations can drive saltatory behavioral evolution
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Declaration of interests
	Author contributions
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Method details
	Male song recording and analysis
	Female preference functions
	Modeling
	Stimulus and response data
	Predicting phonotaxis score from model responses
	Model fitting
	Autocorrelation model
	Rebound model
	Rebound model with feed-forward inhibition
	Resonate-and-fire neuron
	Full model of the song recognition network in G. bimaculatus
	Modeling jumps between resonant peaks with spike-frequency adaptation


	Quantification and statistical analysis




