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Abstract12

Rare behavioral phenotypes can challenge hypotheses about the evolution of the neural net-13

works that drive behavior. In crickets, the diversity of song recognition behaviors is thought to14

be based on the modification of a shared neural network. We here report on a cricket with a15

novel resonant song recognition pattern that challenges this hypothesis. Females of the species16

Anurogryllus muticus respond to pulse patterns with the period of the male song, but also to song17

at twice the period. To identify the mechanisms underlying this multi-peaked recognition, we first18

explored minimal models of resonant behaviors. Though all of the three simple models tested19

(autocorrelation, rebound, resonate and fire) produced some kind of resonant behavior, only a20

single-neuron model with an oscillating membrane qualitatively matched the A. muticus behav-21

ior with regard to both period and duty cycle tuning. Surprisingly, the rebound model, a minimal22

model of the core mechanism for song recognition in crickets, only reproduces the behavior af-23

ter inclusion of additional computations present in the song recognition network of crickets. We24

hypothesize that nonlinear computations, such as those leading to multi-peaked responses, can25

produce rapid—saltatory—behavioral change during evolution. Overall, this shows how pheno-26

typic novelty can arise from the combination of different computations at the level of single cells27

and networks.28
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Introduction29

Evolution has given rise to diverse animal forms and behaviors. Much of this phenotypic diver-30

sity is shaped by the process of mate recognition and sexual selection, and various categories31

of phenotypic cues—visual, acoustic, chemical, tactile—must be integrated for mate choice deci-32

sions to be made. For many species, acoustic signals—calling or courtship songs—are among33

the first features to be recognized and evaluated in mate choice decisions. The acoustic commu-34

nication signals produced during courtship behaviors are therefore highly diverse and contribute35

to species recognition. However, how the neural networks that produce this behavioral diversity36

evolve is largely unknown. A common hypothesis is that novel behaviors arise from shared neu-37

ral networks—mother networks—through small changes in connectivity and in cellular properties38

(Zhu et al., 2023; Bumbarger et al., 2013; Coleman et al., 2023; Ye et al., 2024; Seeholzer et39

al., 2018). At first sight, the idea of incremental changes in network parameters underlying be-40

havioral evolution is at odds with the observation that behavior can change rapidly (Gallagher41

et al., 2022; Xu and Shaw, 2021; Ronco et al., 2020; Yona et al., 2018) and outlier species—42

species with a highly unusual phenotype in a species group—challenge this mother network hy-43

pothesis. Evolutionary-developmental biology explains rapid morphological change—so-called44

”hopeful monsters”—through the re-use and modification of nonlinear gene-regulatory modules45

(Goldschmidt, 1940; Müller, 2007). Because of these nonlinearities, large morphological change46

can then arise from a single mutation in a saltatory instead of gradual manner. Similarly, behav-47

ioral innovations—”behavioral monsters”—could emerge from small changes in a neural network48

from the nonlinear mapping between the network’s parameters and the behavior.49

Experimental tests of the mother network hypothesis are challenging, because they involve50

characterizing and comparing the network properties across many species in a group and then51

causally linking the changes in network properties to changes in behavior. However, a precon-52

dition for the mother network hypothesis is that the shared network has the capacity to produce53

the diverse species-specific behaviors in a group. Computational modeling can help assess this54

capacity from behavioral data, by comparing the observed behavioral diversity with that produced55

by a computational model of the shared mother network. If the model of the proposed mother net-56

work fails to reproduce the behavior of a specific species then that species likely has undergone57

more drastic changes in its recognition mechanism inconsistent with the mother network hypothe-58

sis. Conversely, the hypothesis is supported if the network can reproduce all observed behaviors,59

including those of the ”behavioral monsters”—species with unusual behavioral phenotypes.60

We address the question of behavioral diversity and neuronal evolution in the context of acous-61

tic communication in crickets. Males produce pulsed calling songs with species-specific pulse and62

pause durations ranging between 10 and 80 ms (Fig. 1A, B) (Alexander, 1962). The songs are63

either produced in chirps consisting of a few pulses or continuously, in trills. Females evaluate64

the song on the time scale of pulse pause and duration, and of chirps/trills (Fig. 1A) (Grobe et al.,65

2012). Attractive songs elicit positive phonotaxis in the female. The female tuning for the calling66

songs can be quantified by measuring the phonotactic behavior for artificial pulse patterns in a67

two-dimensional parameter space spanned by pulse and pause duration (Fig. 1C). The strength68

of phonotactic orientation towards the acoustic stimulus then serves as a measure for the strength69

of recognition. So far, preference functions are known from 18 cricket species, and they all reveal70

unimodal preferences for a single continuous range of song features (Bailey et al. (2017), Cros and71

Hedwig (2014), Gray et al. (2016), Hennig (2003), Hennig (2009), Rothbart and Hennig (2012a),72

Rothbart and Hennig (2012b), Hennig et al. (2016), and Blankers et al. (2015) and Ralf Matthias73

Hennig, unpublished data). The known preferences fall into three types, characterized by the fe-74

males’ selectivity for specific features of the pulse song: Tuning for pulse duration, for period (pulse75

plus pause) and for duty cycle (duration divided by period, referred to from now as ”DC”) (Fig. 1F).76

Tuning for pause duration is a fourth possible phenotype, but this one has not yet been reported in77

crickets. Song recognition based on the duration or period of acoustic signals is not restricted to78

crickets but found throughout the animal kingdom (Baker et al., 2019; Araki et al., 2016; Perrodin79

et al., 2023; Lameira et al., 2024). Understanding the principles underlying the evolution of pulse80

song recognition in crickets can therefore inform similar studies in others species groups.81

We have recently shown that the song recognition network described in the period-tuned Gryl-82

lus bimaculatus can produce the diversity of song recognition known in crickets until now. In G.83

bimaculatus, five neurons recognize the song in five steps Schöneich et al., 2015: 1) The ascend-84

ing neuron 1 (AN1) pools and transmits to the brain information from auditory receptors in the85

prothorax and produces an intensity-invariant copy of the song pattern (Benda and Hennig, 2008).86

2) The local neuron 2 (LN2) receives input from AN1 and provides inhibition to LN5 and LN4. 3)87

The non-spiking LN5 produces a post-inhibitory rebound potential at the end of each song pulse.88
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4) LN3 fires only in response to coincident input from the rebound in LN5 and a delayed input from89

AN1. The input delay from AN1 is tuned such that coincidence only occurs for pulses with the90

species-specific period of 30 ms. 5) LN4 receives inhibition from LN2, which further sharpens the91

feature tuning. The tuning of LN4 for pulse song matches that of the phonotaxis response. Similar92

principles of temporal pattern recognition with delay lines and post-inhibitory rebounds are known93

from many systems (Carr and Konishi, 1988; Carr, 1993; Kopp-Scheinpflug et al., 2011) and un-94

derstanding the capacity and constraints of this algorithm in crickets can therefore shed light on95

temporal pattern recognition across systems. A computational model reproduced the response96

dynamics of all neurons in this network as well as the behavioral output (Clemens et al., 2020)97

revealed that the network from G. bimaculatus can produce the three preference types known in98

crickets—preference for period, pulse duration, and duty-cycle—through changes in network pa-99

rameters like synaptic strengths or intrinsic neuronal properties. Thus, the G. bimaculatus network100

could be the mother network producing the diversity of song recognition in crickets.101

We here describe the male song and female preference of a novel cricket species Anurogryl-102

lus muticus (from now referred to as Anurogryllus). Anurogryllus females exhibit a multi-peaked103

recognition phenotype that is unique in crickets and could challenge the hypothesis of a shared104

mother network: Females are attracted not only to the period of the male song but also to twice the105

period (Fig. 1C–E). Importantly, all other known cricket species have preference functions with a106

single peak (Bailey et al. (2017), Cros and Hedwig (2014), Gray et al. (2016), Hennig (2003), Hen-107

nig (2009), Rothbart and Hennig (2012a), Rothbart and Hennig (2012b), Hennig et al. (2016), and108

Blankers et al. (2015) and Ralf Matthias Hennig, unpublished data) and only Anurogryllus exhibits109

this multi-peaked preference function. All existing evidence therefore points towards Anurogryllus110

having a phenotype that is highly unusual and an outlier in the context of crickets, consistent with111

the concept of ”behavioral monsters”. Responses to multiples or fractions of a song’s period have112

only been shown in a single species of katydids, Tettigonia cantans (Fig. 1H), and such responses113

are consistent with a resonant mechanism for song recognition (Bush and Schul, 2006). Compu-114

tational modeling in katydids has suggested that delay-based mechanisms can not explain the115

resonant responses in the katydid and provided evidence for a nonlinear resonant-and-fire (R&F)116

mechanism of song recognition in katydids (Webb et al., 2007). Importantly, it is unclear whether117

the computational model of the song recognition network in crickets—which relies on a delay-118

based mechanism—can produce the resonant preference of Anurogryllus. Thus, Anurogryllus is119

a challenge to the mother network hypothesis and an opportunity to identify the computational120

principles that can give rise to resonant tuning.121

Here, we provide further support for the mother network hypothesis, by demonstrating that it can122

produce the resonant recognition behavior of Anurogryllus. We first explore the tuning properties123

of minimal models of resonant behavior based on network and intracellular mechanisms, and124

compare these results to those obtained from the full mother network model. Lastly, we explore125

the hypothesis that nonlinear computations, such as those that give rise to resonant recognition126

behaviors, could form the substrate for saltatory behavioral evolution.127
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Figure 1: Anurogryllus is a cricket species with resonant song recognition.
A Schematic of the calling song of males from the cricket species Anurogryllus muticus (from now referred to as Anuro-
gryllus). The song consists of a trains of pulses with a specific pulse duration and pause. The period is the sum of pulse
and pause and corresponds to the song’s rhythm. The duty cycle (DC) is the percentage of the period occupied by the
pulse and corresponds to the song’s energy.
B Pulse and pause parameters from eight Anurogryllus males. The diagonal line corresponds to a DC of 50%, the anti-
diagonal to the average pulse period Ts = 8 .6 ms. See Table 1 for all song parameters.
C Female phonotaxis for pulse trains with different duration and pause parameters visualized as a pulse-pause field (PPF).
Phonotaxis is color coded with darker greys representing stronger phonotactic responses (see color bar). Diagonal lines
indicate stimuli with DCs of 30, 50, and 80%, shown in D as the phonotaxis along these diagonals. The anti-diagonal lines
show transects with constant period stimuli shown in E at the average pulse period of the male song Ts (orange), at half
(Ts/2 , yellow) and twice (2Ts , red) the song period. Females respond strongly to pulse patterns with the period of the
males’ song, but also at twice that period, indicating resonant song recognition. See table S6 for statistical significance of
the individual peaks. The PPF was obtained by interpolation of the average phonotaxis values measured for 75 artificial
stimuli in 3–8 females (Fig. S1).
D Period tuning as a function of DC given by three transects through the PPF in C (see legend in C). Vertical lines indicate
Ts/2 (yellow), Ts (orange), and 2Ts (red).
E DC tuning as a function of song period, derived from transects through the PPF in C (see legend in C).
F The three previously known female preference types for the pulse pattern of the male calling song in different cricket
species: period (left), duration (middle), and DC (right). The solid black lines indicate the major or most tolerant axis that
defines the tuning type, and the double sided arrows perpendicular to the major axis show the most sensitive feature axis.
G Schematic of the novel resonant recognition from Anurogryllus, simplified from C.
H Resonant recognition from the katydid Tettigonia cantans (Bush and Schul, 2006). The question mark indicates the
range of stimulus parameters not tested in the original study. Anti-diagonal lines in G and H indicate stimuli with Ts/2
(yellow), Ts (orange), and 2Ts (red).
See also Fig. S1 and Table S6.
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Results128

Anurogryllus exhibits an unusual resonant recognition phenotype129

The calling song of Anurogryllus males consists of continuous trills with a pulse period Ts of 8 .5 ±130

0 .3 ms, which corresponds to a pulse rate fs of 117 .1 ± 4 .3 pulses per second (Fig. 1A, B). We131

refer to the pulse rate measured in pulses per second as f, for notational simplicity. This pulse132

rate is unusually high for cricket songs, which have pulse rates between 10 and 50 pulses per133

second (Weissman and Gray, 2019). The song’s DC—given by the ratio of pulse duration and134

pulse period, and indicating how much of the song is filled by pulses—is 60±10% (see Table 1 for135

a list of all song parameters). To quantify the preference of Anurogryllus females for the calling136

song we quantified the strength of the females’ phonotaxis response during playback of 75 artificial137

pulse trains with different pulse and pause duration combinations (Fig. 1C, S1). This confirms that138

females are attracted (perform positive phonotaxis) to the pulse trains produced by conspecific139

males: The two-dimensional preference function spanned by pulse duration and pause contains140

a broad peak covering periods of 8̃.5 ms and DCs of 33–80%, which overlaps with the distribution141

of male songs. This peak is partially split along the DC axis (Fig. 1C).142

Song parameter Mean± std Range
Carrier frequency 7.0±0.3 kHz 6.5-7.5 kHz
Pulse duration 5.1±1.0 ms 3.7-6.6 ms
Pulse pause 3.4±0.8 ms 2.1-4.4 ms
Pulse period 8.5±0.3 ms 8.1-9.0 ms
Pulse rate 117±4 pulses/s 111-124 pulses/s
Pulse DC 60±10 % 50-80 %

Table 1: Parameters of the calling song of Anurogryllus males.
Data from 8 males over 1 minute of song with at least 7500 pulses per male. Carrier frequencies from (Erregger et al.,
2017).

However, the phonotaxis experiments also reveal that females are attracted to songs that differ143

substantially from the conspecific song and the tuning of these off-target responses implies a144

resonant recognition phenotype in Anurogryllus (Fig. 1D, E, Table 1). These off-target responses145

appear at twice or half the song period: First, song with twice the period of the male song (17 ms)146

with a high DC (9̃0%) is almost as attractive as the conspecific song. Second, females are also147

weakly attracted to song with twice the conspecific period (17 ms) and lower DC (25%). Lastly,148

there is a weak and non-significant response peak at half the conspecific period (4.5 ms) and low149

DC (33%). The responses at integer fractions or multiples of the song’s fundamental rate indicate150

a resonant response mechanism. If we define Ts = 8 .6 ms as the period of the male song, and151

the fundamental rate fs = 1/Ts = 116 pulses per second, then the weak peak at half the period,152

Ts/2 ≈ 4 .3 ms, corresponds to the second harmonic, 2fs , while the peaks at twice the period,153

2Ts ≈ 17 .2 ms, correspond to the second subharmonic, fs/2 .154

So far, a resonant song recognition behavior—with responses to three different types of pulse155

patterns—has not been reported in a cricket (Fig. 1F–G)—it was previously known only in the156

katydid Tettigonia cantans (Bush and Schul, 2006) (Fig. 1H). The resonant phenotype in T. can-157

tans is similar to that of Anurogryllus: T. cantans females are attracted to pulse trains with the158

period of the male song (period 40 ms, DC 50%), and to subharmonics of the male song—songs159

with twice the conspecific period (80 ms, DC 25%). T. cantans does not respond to harmonics160

(half the period, 20ms) and it was not tested whether females are attracted at twice the period at161

higher DCs, the pattern that Anurogryllus is most responsive to apart from the conspecific song. A162

simple delay-line based mechanism in T. cantans was ruled out as a potential mechanism for res-163

onance using experimental tests, but a resonate-and-fire neuron model with oscillatory membrane164

properties could reproduce the resonant song preference (Bush and Schul, 2006; Webb et al.,165

2007). Oscillatory neurons have therefore been proposed as a mechanism for song recognition in166

T. cantans. However, the rebound-based mechanism at the core of the song recognition network167

in crickets had not been considered, and it is unclear whether oscillatory neurons can reproduce168

the particular pattern of resonance observed in Anurogryllus.169
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Simple models provide insight into the computational mechanisms of reso-170

nant tuning171

The resonant phenotype in Anurogryllus challenges the mother network hypothesis, as the model172

of the song recognition network in crickets was only shown to produce all known single-peaked173

phenotypes, not the specific resonant phenotype of Anurogryllys (Clemens et al., 2021) (Figs 1F,174

G). We therefore tested whether this model network could also produce the resonant tuning of175

Anurogryllus. However, given that the computational model of the song recognition network in176

crickets is complex and has many parameters, we decided to first identify the computational prin-177

ciples and constraints that shape resonant tuning by investigating the ability of simple network and178

single-neuron models to qualitatively reproduce the resonant behavior of Anurogryllus. Simple179

models allow us to 1) isolate the minimal set of computations required for generating resonant180

behaviors, 2) facilitate the interpretation of the more complex network model, and 3) rule in or out181

alternative mechanisms not currently part of the mother network but that might be easily acquired182

during evolution. Given the simplicity of the models chosen, our goal was not a detailed reproduc-183

tion of the Anurogryllus behavior (Fig. 1C), but a reproduction of the most prominent properties of184

the period and DC tuning: namely the broad DC peak at the period of the male song, Ts , and the185

two response peaks at 2T fs , with the dominant peak at high DC (Fig. 1G).186

We fitted three simple models to the behavioral data from Anurogryllus: First, an autocorrela-187

tion model, which consists of a delay line and a coincidence detector (Bush and Schul, 2006). This188

is the simplest model that can produce resonances and shows that delays alone can produce res-189

onant response peaks. Second, the rebound model, which is an extension of the autocorrelation190

model and captures the core computation of the mother network, in which the non-delayed input to191

the coincidence detector consists of offset responses from a post-inhibitory rebound (Schöneich192

et al., 2015; Clemens et al., 2021). The rebound model will reveal whether the core-computation193

of the mother network—a delay line, rebound, and coincidence detection—is sufficient to produce194

the resonant tuning of Anurogryllus. Lastly, we examined the a resonate-and-fire (R&F) neuron,195

a single-neuron model with subthreshold membrane oscillations that reproduced the resonant be-196

havior of T. cantans (Izhikevich, 2001; Webb et al., 2007). This last model will allow us to examine197

how changes in intracellular properties, rather than network properties, can produce the resonant198

song recognition of Anurogryllus.199

Autocorrelation models produce resonant tuning but do not match the Anurogryllus be-200

havior201

In an autocorrelation model, the song input is split into two pathways, one with a delay ∆ac , and202

one without a delay (Fig. 2A). Responses from the delayed and non-delayed pathways are then203

multiplied in a coincidence detector, that only responds when the delayed and the non-delayed204

inputs overlap in time. The model response is then taken as being proportional to the average205

output of the coincidence detector over the song.206

The autocorrelation model fitted to the Anurogryllus data produces resonant response peaks207

for pulse rates at integer fractions, but not at multiples, of the delay ∆ac (Fig. 2B, C). The fitted208

value of ∆ac = 17 ms corresponds to 2Ts , the peak at twice the pulse period in the behavioral209

data (Fig. 1E). Coincidence occurs if nT = ∆ac , leading to resonant peaks at periods that are210

fractions of the delay T = ∆ac/n (or at pulse rates f = n/∆ac ) (Fig. 2E, F). Thus, resonant peaks211

in the autocorrelation model arise at even and odd fractions of ∆ac and coincide with Ts and 2Ts .212

However, the behavior only exhibits responses at even fractions of ∆ac . The lack of peaks at213

odd fractions of ∆ac in Anurogryllus renders a pure autocorrelation-based mechanism for song214

recognition unlikely (Fig. 1E).215

Similar to the period tuning, the DC tuning of the fitted autocorrelation also does not match216

the behavioral data: The output of the autocorrelation model increases linearly with DC (Fig. 2D),217

with maximal responses for constant tones without a pause (DC 100%). By contrast, Anurogrullus218

exhibits complex DC tuning with multiple peaks and, importantly, does not respond well to pulse219

trains with very high DCs (Fig. 1E). The DC bias in the autocorrelation model arises because220

songs with longer pulses and shorter pauses are more likely to produce coincidence for any given221

delay (Fig. 2F, Fig. 2G, H).222

In sum, the autocorrelation model demonstrates that a delay is sufficient to produce resonance.223

However, autocorrelation alone is insufficient to qualitatively reproduce the pulse rate and DC224

tuning found in Anurogryllus.225
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Figure 2: An autocorrelation model produces resonant tuning.
A In the autocorrelation (AC) model, a non-delayed (blue) and delayed (orange) copy of the stimulus are multiplied in a
coincidence detector (grey). The output of the coincidence detector is integrated over the stimulus to predict the model
response. The example traces show coincidence for song with a pulse period that equals the delay ∆ac .
B PPF for the autocorrelation model fitted to the preference data in 1C. Predicted response values are coded in greyscale
(see color bar). Colored lines correspond to the DC and period transects shown in C and D (see legend).
C Period tuning of the autocorrelation model for different DCs (see legend in B). Resonant peaks arise at even and odd
fractions of the delay parameter ∆ac ≈ 2Ts . Vertical lines indicate the pulse periods transects shown in B.
D DC tuning for three different pulse periods (see legend in B), corresponding to Ts/2 , TS , and 2T . DC tuning is high-pass
for all periods.
E Response traces from the autocorrelation model for songs with different periods (fractions and multiples of Ts ) and a
DC of 33%. Resonant peaks arise from coincidence at integer fractions (e.g. 1∆ac/2 = 2Ts/3 ) but not at multiples
(2∆ac = 2Ts ) of the delay parameter (stimulus–blue, delayed stimulus–orange, response–grey, see legend to the right).
F Pulse rate tuning given by the integral of the stimulus (blue), the delayed stimulus (orange), and the response (grey) at
50% DC. Response peaks arise at integer multiples and fractions of ∆ac . Dots indicate pulse patterns shown in E. Vertical
lines indicate the song periods shown in D.
G, H Response traces for different DCs (25, 50, 75%) (G) and DC tuning (H) at a non-resonant pulse rate (1 .5Ts =
12 .9 ms). Increasing the DC leads to coincidence even at this non-resonant pulse rate. Same color code as in E, F.
Gray boxes in E and G illustrate the stimulus parameters for which traces are shown in the context of the PPF (compare
B).
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A rebound mechanism suppresses responses to pulse trains with high duty cycles226

The core computation for song recognition in the cricket G. bimaculatus is an extension of the227

autocorrelation model (Schöneich et al., 2015; Clemens et al., 2021) (Fig. 3A): As in the au-228

tocorrelation model, the song is split into a delayed and a non-delayed path. The non-delayed229

path is then sign-inverted and filtered to produce transient responses at the end of each pulse,230

to mimic a post-inhibitory rebound. The rebound model produces outputs only when the delayed231

input coincides with the rebound.232

The pulse rate tuning of the rebound model resembles that of the autocorrelation model, with233

resonant peaks arising close to even and odd fractions of the delay ∆rb (Fig. 3B, C, compare234

2C). However, the fitted value of ∆rb = 23ms matches neither multiples nor fractions of Ts . This235

is because the rebound is produced at the end of each pulse and coincidence therefore occurs236

if n · T + D = ∆rb, where D is the pulse duration (Fig. 3E, F). Resonant peaks occur at T =237

(∆rb − D)/n (equation ) or f = n/(∆rb − D), close to even and odd fractions of 2Ts (Fig. 3A, B,238

E, F). The responses to odd fractions of Ts in the rebound model are not found in the behavioral239

data. Therefore, a pure rebound mechanism is unlikely to produce the Anurogryllus behavior.240

The DC tuning of the rebound model is band-pass, with reduced but non-zero responses for241

continuous tones (high DC) (Fig. 3D, G). This band-pass tuning arises from two opposing pro-242

cesses: On the one hand, responses increase with pulse duration up to a point set by the duration243

of the inhibitory filter lobe that produces the rebound. This is because the rebound is strongest244

if the pulse is long enough to saturate the rebound, which happens when it fully overlaps the in-245

hibitory filter lobe (Fig. 3I). However, a further increase in pulse duration at a fixed pulse period246

shortens the pauses and for short pauses, the rebound is interrupted by the next pulse (Fig. 3G,247

J).248

Overall, the rebound model fails to reproduce the qualitative features of the Anurogryllus re-249

sponses. Period tuning exhibits excess peaks at odd fractions of the pulse rate as in the autocor-250

relation model. While the DC tuning is band-pass, as in Anurogryllus, responses to constant tones251

are still evident and the characteristic pattern with split-peaks is missing. This failure to reproduce252

the Anurogryllus behavior is surprising given that the rebound constitutes the core mechanism of253

song recognition in crickets. However, we will show below that a rebound mechanism can produce254

the Anurogryllus behavior when combined with other computations found in the full network.255

The resonate and fire model is a simple model that qualitatively matches the Anurogryllus256

behavior best257

As the last simple model, we fitted a resonate-and-fire (R&F) model to the Anurogryllus data. In258

contrast to the autocorrelation and rebound models, which are network models, the R&F model259

is a single neuron model that consists of coupled current and voltage-like variables (Fig. 4A)260

(Izhikevich, 2001). This coupling leads to input-driven damped oscillations with a characteristic261

frequency fr&f . Inputs that arrive at positive/negative phases of the oscillation amplify/suppress262

this oscillation. If the voltage reaches a threshold, a spike is elicited and the current and voltage263

are reset. The R&F model can produce resonant behavior if the damping is weak and it was used264

to reproduce the resonant song recognition from T. cantans (Bush and Schul, 2006; Webb et al.,265

2007).266

The R&F model fitted to Anurogryllus data is weakly damped (less than 2% of the stimulus267

gain). It has a characteristic frequency fr&f = 109 Hz, which translates to Tr&f = 9 .2 ms—close268

to the pulse period of the Anurogryllus song. The R&F responds strongly if the incoming pulses hit269

the intrinsic oscillation during excitatory phases and resonant peaks therefore arise at multiples of270

the period n · Tr&f = n/fr&f . Thus, contrary to the autocorrelation and rebound models, the R&F271

model responds only to multiples (subharmonics), but not to fractions of Tr&f (harmonics) (Fig. 4B,272

C). In the R&F, responses to fractions of Tr&f are suppressed, because inputs faster than Tr&f will273

arrive not only during the excitatory but also during the inhibitory phase of the intrinsic oscillation,274

reducing the net drive to the spike generator. By contrast, responses at multiples of Ts exist275

because subsequent pulses will arrive during the excitatory phase of the membrane oscillation276

(Fig. 4E, F). The R&F model produces the Anurogryllus responses at Ts and 2Ts and, apart from277

excess responses at higher multiples of Ts , matches the behavior well.278

The DC tuning of the R&F model is more complex than that of the autocorrelation and rebound279

models. At Tr&f , the model responds with a single, broad peak to different DCs, whereas at 2Tr&f ,280

two separate peaks—at high and low DCs—are visible (Fig. 4B, D). The peak at the higher DC is281

greater than that at the lower DC, consistent with the Anurogryllus behavior. With this DC tuning,282

the R&F model qualitatively matches the Anurogryllus data best out of all models tested so far (Fig.283
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Gray boxes in E and G illustrate the stimulus parameters for which traces are shown in the context of the PPF (compare
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1F). Note that the R&F also produces peaks at 3Tr&f , but stimuli covering these periods were not284

tested experimentally.285

How does this complex DC tuning arise in the relatively simple R&F model? In the model,286

inputs during the excitatory phase of the membrane potential oscillation amplify the oscillation and287

therefore elicit spiking responses, while inputs during the negative phase suppress the spiking288

responses. Songs with a pulse period of Ts match the period of the membrane oscillation and289

an input with a DC of 50% will produce the maximum output because it covers only the excita-290

tory phase of the oscillations (Fig. 1G, H). Shorter pulses (DC<50%) will produce weaker voltage291

responses because they engage the excitatory phase less, and longer pulses (DC>50%) will pro-292

duce weaker voltage responses because they extend into the inhibitory phase. Pulse patterns293

with a pulse period of 2Ts—twice the period of the oscillation—produce DC tuning with two broad294

peaks—around DC 25% and around DC 75%—and no responses at DC 50% (Fig. 1I, J). The295

responses at DC 50% are suppressed because the pulse covers one full period of the oscillation,296

and therefore equally engages the excitatory and the inhibitory phases of the oscillation, resulting297

in weak spiking responses. Stimuli with smaller or larger DCs produce stronger responses be-298

cause more of the excitatory phases of the oscillation are engaged. The peak at higher DCs is299

higher than that at lower DCs because the pulse hits the excitatory phase once per period for DCs300

below 50% and twice for DCs above 50% (Webb et al., 2007), as in (Fig. 4I).301

Simple network models, unlike the single neuron model, fail to reproduce the behavioral302

period and DC characteristics303

Overall, none of the simple models were able to fully reproduce the Anurogryllus tuning. However,304

a single-neuron model—the R&F model—came closest, suggesting that changes in single neuron305

properties might underlie the emergence of resonant tuning in Anurogryllus (Fig. 4). By contrast,306

simple delay-based models (autocorrelation and rebound) are insufficient to recover the Anurogryl-307

lus tuning (Figs 2, 3): The delay-based models are resonant but they produce strong responses308

to very short periods (fractions of Ts ) and are unable to replicate the DC tuning of Anurogryllus,309

in particular the double-peaked DC tuning at 2Ts . Importantly, the failure of the rebound model,310

which replicates the hypothesized core mechanism of song recognition in crickets, challenges the311

mother network hypothesis (Schöneich et al., 2015; Clemens et al., 2021)). However, the mother312

network, developed using electrophysiological data from G. bimaculatus, contains additional com-313

putations like adaptation and feed-forward inhibition. We therefore fitted a model of the full network,314

previously developed in Clemens et al. (2021) (Fig. 5A), to the behavioral data from Anurogryllus315

to test whether these additional computations can produce the behavior.316

The mother network can produce the resonant phenotype317

A computational model of the song recognition network in crickets, that was originally constructed318

to reproduce electrophysiological data from G. bimaculatus (Clemens et al., 2021), was fitted to the319

behavioral data from Anurogryllus females (Fig. 1C). This model reproduced the Anurogryllus be-320

havior (5A): Resonant peaks at Ts and 2Ts , and DC tuning at 2Ts that is bimodal with a preference321

for higher DCs. This supports the mother network hypothesis—the network from G. bimaculatus322

can produce the preference profiles from all cricket species examined so far and could therefore323

constitute the template network for song recognition in crickets. How does the characteristic period324

and DC tuning arise in the network? Above, we have shown that the rebound mechanism at the325

core of the network is sufficient to produce resonant responses but insufficient to produce the DC326

tuning at 2Ts (Fig. 3 D). We therefore investigated where in the network both response properties327

arise.328

In the full network, LN3 is equivalent to the output of the simple rebound model as it is the329

coincidence detector that receives input from the rebound neuron LN5 and a delayed input from330

AN1. Accordingly, resonant tuning with responses at multiple periods in the network arises in LN3331

(Fig. 5E). Indeed, the effective delay between the two inputs to LN3 is 25.3 ms, similar to the delay332

∆rb = 23 ms found for the simple rebound model.333

The DC tuning of Anurogryllus arises in the last neuron of the full network, in LN4 (Fig. 5E).334

LN4 receives excitatory input from the coincidence detector LN3 and feed-forward inhibition from335

LN2. The inhibition from LN2 shapes the DC tuning by suppressing responses to song with a DC336

of 50% at 2Ts (Fig. 5F): At DCs around 50%, the excitatory input from LN3 is ineffectual because it337

overlaps with the strong inhibition from LN2. For higher and lower DCs, inhibition is less potent and338

hence the output from coincidence detection prevails and LN4 responds. At lower DCs, inhibition is339
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Figure 4: Tuning for pulse rate and duty cycle in the resonate and fire model fitted to Anurogryllus behavior.
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H, J DC tuning at Ts (H) and 2Ts (J). Dots mark the stimuli shown in G and I. DC tuning is unimodal at Ts and bimodal at
2Ts .
Gray boxes in E, G, and I illustrate the stimulus parameters for which traces are shown in the context of the PPF (compare
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weak and offset in time from the excitatory input from LN3. At higher DCs, the excitation from LN3340

is stronger and arrives slightly later than the inhibition. In summary, the Anurogryllus tuning arises341

serially, through two computations in the network model: Rebound and coincidence detection in342

LN3 shape the period tuning and feed-forward inhibition from LN2 suppresses responses at wrong343

periods and shapes the DC tuning.344

To confirm that a mechanism comprising rebounds and feed-forward inhibition is sufficient to345

reproduce the Anurogryllus behavior, we extended the simple rebound model (Fig. 3) with delayed346

feed-forward inhibition (Fig. S2A). We used the parameters of the simple rebound model (Fig.347

3) and only fitted the delay and filter properties of the LN2-like input to LN4 (see Methods). This348

model is sufficient to reproduce the resonant period tuning (Fig. S2C) and the bimodal DC tuning of349

Anurogryllus (Fig. S2B–D). The DC tuning arises from the timing of excitatory and inhibitory inputs350

to LN4 (Fig. S2E), not from their strengths (Fig. S2F). Responses to a DC of 50% are suppressed351

in LN4 because excitation and inhibition arrive at the same time (Fig. S2E). For shorter/longer352

DCs, inhibition arrives too early/late to cancel the excitation.353

Nonlinear computations can accelerate the divergence of song preferences354

through saltatory evolution355

Resonant, multi-peaked preference functions as found in A. muticus (Fig. 1C–E) may impair356

species discrimination, because they produce responses not only to the period of the conspe-357

cific song but also to its multiples or fractions. However, resonant recognition mechanisms could358

drive the fast co-divergence of song structure and song preference between sister species: Ac-359

cording to the standard model of evolution, novel phenotypes evolve through an accumulation of360

small genetic changes that induce small phenotypic changes. However, an alternative, saltatory,361

model poses that nonlinearities in the mapping from genotype to phenotype can drive sudden362

large phenotypic changes (Gould and Eldredge, 1977). Evolutionary developmental biology has363

shown that strongly nonlinear developmental programs can give rise to morphological innovations364

from small genetic changes (Müller, 2007)—so-called morphological monsters. Resonant song365

recognition with responses to disjoint sets of songs is also the result of a highly nonlinear mapping366

from network parameters to behavior. If simple mechanisms existed to isolate individual resonant367

peaks, then behavioral preferences could jump between these peaks, resulting in sudden large368

changes in the female preference that will drive large changes in male song and a rapid isolation369

between sister species.370

Spike-frequency adaptation (SFA) is one mechanism that can isolate individual peaks from a371

resonant preference function: SFA is ubiquitous in the nervous system and is also found in the song372

recognition network of G. bimaculatus (Benda and Hennig, 2008; Schöneich et al., 2015; Clemens373

et al., 2021). SFA in combination with the low-pass properties of the neuronal cell membrane374

results in a band-pass filter that can be tuned by changing the time constants of the membrane or375

of the adaptation current (Benda and Herz, 2003; Benda, 2021). We have implemented a simple376

proof-of-principle model to illustrate that SFA can isolate individual peaks from a resonant response377

field (Fig. 6B–F). In the example, changes in the membrane time constant of an adapting neuron378

can change the relative amplitudes of the individual peaks and thus hide or reveal individual peaks379

without creating intermediate ones. This will exert selection pressure on the male song to jump to380

the new larger peak of the female preference function. SFA could thus be a mechanism through381

which acoustic communication evolves in a saltatory manner: Not by gradual shifting of female382

preference and male songs but by jumping of the preferences and songs between relatively fixed383

resonant peaks (Fig. 6A).384

Direct evidence for this hypothesis is difficult to obtain as data on female song preference from385

other Anurogryllus species does not exist. However, given that female preference and male song386

are hypothesized to co-evolve and typically do so in crickets (Kostarakos and Hedwig, 2012; Gabel387

et al., 2016; Stout et al., 1983; Doherty and Storz, 1992; Shaw and Herlihy, 2000; Grace and Shaw,388

2011) , song data could be used as indirect support of our hypothesis. Under the hypothesis, the389

pulse periods of males from different Anurogryllus species should be close to multiples or fractions390

of each other. While song data from the genus Anurogryllus is scarce we did find information on the391

song from six other Anurogryllus species (Table 2), and that data is consistent with our hypothesis392

(Fig. 6G). The distribution of song periods of all seven species is trimodal with the modes at393

periods of 7.2, 13.4, and 22.8 ms, close to integer multiples of each other. This is consistent with394

songs changing in integer steps along resonant peaks. In addition, the first two modes at X and395

Y ms are close to the resonant bands of the A. muticus preference function (compare Fig. 1D),396

with 45% of the song data overlapping with the resonant bands from A. muticus females. Under397
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B The resonant phenotype of Anurogryllus recovered with the five neuron model. Colored lines correspond the period and
DC transects in D and E.
C Traces of the DC transects labeled in B at 33%, 50%, and 80% DC, which each reveal the relative strength of the peaks at
Ts/2 , Ts , and 2Ts . There is no response at the shortest period (Ts/2—yellow). At the period of male song (Ts—orange),
DC tuning is band-pass. At the 17 ms period (2Ts—red), tuning is biphasic, as observed in the behavioral data. Vertical
lines correspond to the DCs shown in C.
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a uniform random model, the expected overlap is 15 ± 4% and the observed distribution of songs398

is thus unlikley to have arisen by chance (p < 10−12 , Fig. 6H). While this preliminary analysis399

does not provide proof, the results are consistent with the hypothesis that song preference and400

song structure may develop in a saltatory manner by jumping between more or less fixed resonant401

peaks in Anurogryllus. In the future, a more comprehensive survey of male song and female402

preference in different Anurogryllus species is required to further test the hypothesis.403
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Discussion404

In this paper, we investigated the consequences of the unique song recognition phenotype of405

Anurogryllus for the evolution of acoustic communication among crickets. Anurogryllus females406

respond to three different pulse patterns: pulse patterns matching the period of the male song407

but also to patterns with twice the period and low or high duty cycle(Fig. 1). Using computational408

modeling, we tested whether this unusual recognition phenotype in crickets necessitates a cor-409

responding novel recognition mechanism or if the hypothesized shared mechanism observed in410

other cricket species suffices.411

First, to identify elemental computations required for resonant song recognition, we tested sim-412

ple delay and filter-based network models, alongside a single-neuron model with resonant mem-413

brane properties (Figs. 2, 3, 4). While each model could resonate, it was the resonate and fire414

single-neuron model that best matched the tuning of Anurogryllus for both period and DC. That415

a single-neuron model qualitatively matches the behavior suggests that changes in intracellular416

properties capable of inducing oscillations of the membrane potential could underlie the evolution417

of resonant song recognition in Anurogryllus.418

Critically, we found that a pure rebound mechanism, the core computation of the hypothesized419

shared mechanism for song recognition in crickets, is insufficient to reproduce the tuning of Anuro-420

gryllus and that additional computations present in the shared network are necessary (Fig. 5): The421

core rebound mechanism gives rise only to the resonant period tuning but not the DC tuning, cast-422

ing doubt on the mother network hypothesis. However, the addition of feed-forward inhibition,423

present in the full model, recovered the DC tuning profile (Fig. S2). In G. bimaculatus, the cricket424

species in which the network was described, feed-forward inhibition primarily served to refine pe-425

riod tuning (Schöneich et al., 2015), as no resonances appear at the coincidence detection stage426

of the network in this case. In Anurogryllus, it appears to have been coopted to modulate DC tuning427

by attenuating responses to intermediate DCs. This is in agreement with the fitted mother network428

model, in which the resonant response arises in two steps: The rebound-based mechanism at the429

core of the network shapes the period tuning, while feed-forward inhibition shapes the DC tuning.430

Importantly, in the original network, the feed-forward inhibition only sharpens the period tuning,431

suggesting that this computation can be re-used in Anurogryllus for another function. Overall,432

our study shows how novel behaviors can arise from the modification of existing intracellular and433

network computations.434

Mechanisms of resonant song recognition in Anurogryllus435

In the absence of physiological recordings, computational modeling can be used to constrain hy-436

potheses about the recognition mechanism of Anurogryllus. Here, we used two approaches: 1)437

Minimal models of networks and single-neurons, to identify the computations required to produce438

the Anurogryllus tuning, and 2) a complex network model based on the song recognition network439

from another species, G. bimaculatus, to test about the potential of that network to produce reso-440

nant behavior. We identified two mechanisms that can give rise to the resonant song recognition441

in Anurogryllus: A cell-intrinsic mechanism based on oscillatory membrane properties (Fig. 4).442

And a combination of two network mechanisms: rebound and feed-forward inhibition (Fig. 5, S2).443

The resonate and fire neuron, a single-neuron model that was previously used to reproduce444

resonant song recognition in a katydid (Webb et al., 2007) qualitatively reproduced the pulse rate445

and DC tuning of Anurogryllus. It produced responses to Ts and 2Ts and exhibited bi-modal DC446

tuning at 2Ts (Fig. 4). Off-target responses in the model for longer periods could be suppressed447

by additional computations like a high-pass filter, for instance via adaptation, a computation that is448

ubiquitous in the mother network (Benda, 2021; Clemens et al., 2020). The resonant membrane449

properties could arise by changing the expression levels of specific ion channels in any of the450

neurons of the mother network. For instance, voltage-gated calcium (CaV) or potassium (KCNQ,451

HCN) (Ge and Liu, 2016).452

We also found that the rebound mechanism in the mother network alone was not sufficient to453

produce the tuning of Anurogryllus (Fig. 3). However, combining the rebound with feed-forward454

inhibition recreates the period and DC tuning (Fig. S2). In the full network model (Fig. 5A, B),455

these computations arise in different neurons of the network: First, the rebound produced by LN5456

is combined with delayed excitation from AN1 in the coincidence detector LN3 to produce the457

resonant period tuning. Then, feed-forward inhibition from LN2 shapes the DC tuning in LN4.458

Crucial for tuning the network are the response delays: from AN1 onto LN3 to tune the preferred459

periods (Clemens et al., 2021) and from LN2 onto LN4 to tune the DC responses (Fig. S2E, F).460
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Ultimately, determining which of the two proposed mechanisms—single cell or network—generates461

the resonant behavior of Anurogryllus will require intracellular recordings that detect membrane462

oscillations and assess response delays.463

Resonances are rare because they are undesirable, or because they have464

been missed in experiments465

Our analysis of the simple models revealed that resonances can arise easily from common mecha-466

nisms like delays or membrane oscillations (Fig. 2, 3, 4). However, multi-peaked response profiles467

are known only from two species—Anurogryllus and T. cantans (Bush and Schul, 2006). This may468

reflect selection against resonant tuning, because resonances broaden the female tuning to re-469

gions that fall outside of the male calling song, leading to the potential misidentification of mating470

partners. While multi-peaked tuning can still enable mate recognition if other signalers do not sing471

at the resonant off-target peaks (Amézquita et al., 2011), it is likely that these resonances are sup-472

pressed and hidden in many pattern recognition networks, for instance through spike-frequency473

adaptation (Fig. 6B–F).474

However, multi-peaked responses might also be underreported, since their detection requires475

a comprehensive and systematic sampling of the stimulus space when quantifying female pref-476

erences. Future playback experiments should therefore be designed to ensure the detection of477

resonances: Stimuli should not only densely sample different periods but should also do so at478

multiple DCs. For instance, a stimulus set that densely samples pulse periods, but at a DC of479

50% would have missed the resonant peaks at twice the song period in Anurogryllus and T. can-480

tans (Fig. 1G, H). A characterization of the DC tuning also helps differentiate between resonant481

mechanisms (Figs. 2, 3, 4): Only the R&F model produces bimodal DC tuning at 2Ts , while482

autocorrelation and rebound mechanisms produce unimodal DC tuning. Sweep or chirp stimuli483

commonly used in electrophysiology have a changing pulse rate or period are not sufficient for484

discriminating models since these stimuli have a constant DC (Narayanan and Johnston, 2007).485

Similarly, the presence or absence of responses to odd and even multiples or fractions of the song486

period can disambiguate between different mechanisms (Figs. 2, 3, 4): The R&F model responds487

only to even multiples of the model’s characteristic period, while the simple delay-based models488

respond to both even and odd fractions. However, an interpretation of such experiments is com-489

plicated by the fact that the behavioral preference is the outcome of multiple computations, in the490

case of Anurogryllus possibly of a rebound mechanism combined with feed-forward inhibition (Fig.491

S2).492

Resonant song recognition and the evolution of acoustic communication in493

crickets494

Overall, our computational approach revealed the capacity of neural networks for change: The495

song recognition network described in G. bimaculatus consists of a set of elementary computations—496

rebounds, coincidence detection, adaptation, feed-forward inhibition—that can give rise to a rich497

set of recognition behaviors. This network has the capacity to produce all recognition types known498

in crickets: For pulse pause, pulse period, DC, and even multi-peaked resonant tuning of Anuro-499

gryllus. This network could therefore serve as a mother network, that gives rise to the full diversity500

of song recognition in crickets. That even a small network, consisting of only 5 neurons can pro-501

duce so many diverse behaviors highlights the enormous potential of neural networks to produce502

evolutionary novel phenotypes.503

While simple models of the core rebound, delay, and coincidence detection mechanism only504

partially recovered the characteristics of the resonant Anurogryllus behavior, insights from the full505

model revealed that the function of the pulse recognition network in crickets might include ad-506

ditional selectivity for duty cycle via feed-forward inhibition, the inclusion of which enabled the507

simple rebound model to replicate the resonant pattern. These results further suggest that the508

function of the pulse pattern recognition network in crickets cannot be conceptualized merely as509

a rate detector, but that it may additionally select for the duty cycle characteristics of incoming510

song, necessitating the inclusion of feed-forward inhibition in even a minimal model for song fea-511

ture recognition networks in crickets. More generally, the capacity of neuronal networks to drive512

evolutionary change stems in part from the multitude of nonlinear computations at the network and513

single-neuron level, which can be coopted to produce new behaviors.514
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Nonlinear computations can drive saltatory behavioral evolution515

The resonant mechanism for song recognition in crickets studied here is just one example of the516

many nonlinear computations inherent in the neuronal networks that drive behavior. However, they517

help illustrate a different view on the evolution of behavior: While the standard model of evolution,518

gradualism, assumes phenotypic change through the accumulation of small adaptive changes, an519

alternative view poses that large, saltatory change can drive rapid phenotypic change that is then520

fixed through selection (Goldschmidt, 1940; Gould and Eldredge, 1977). This saltatory model is521

supported by the existence of so-called ”morphological monsters”, like flies with legs instead of522

antennae, which are a symptom of the highly nonlinear genetic networks and programs that drive523

morphological development (Müller, 2007). We propose that the highly nonlinear neuronal com-524

putations inherent in the brain can also drive saltatory behavioral evolution, and thus behavioral525

monsters: Animals with highly unusual behaviors. A saltatory mode of evolution may be most526

advantageous if rapid behavioral changes are adaptive, for instance in traits that support species527

evolution. The potentially multi-peaked recognition phenotypes driven by resonant mechanisms528

can be a trait that allows saltatory changes in song recognition. As one example, we have shown529

that spike-frequency adaptation after a resonant recognition network can support this scenario530

(Fig. 6B–F) (Benda and Herz, 2003; Benda, 2021). Changes in adaptation parameters can sup-531

press one resonant peak and amplify another, driving a switch to a novel preferred pulse period532

without intermediates (Fig. 6A). Following the change in female preference will force male songs533

to change drastically as well. It is an open question what nonlinear mechanisms might support the534

rapid—and possibly saltatory—change of song pattern in the song pattern generators. However,535

the same mechanism at work in the female recognition network that gives rise to resonances—536

post-inhibitory rebounds, response delays, adaptation, inhibition—can also be found in the song537

pattern generators (Schöneich and Hedwig, 2011; Jacob and Hedwig, 2019; Schöneich, 2020).538

While the idea of saltatory evolution is theoretically intriguing, it also generates testable hy-539

potheses on the statistics of male song pattern and female song preference within a species group.540

Assuming that male’s pulse pattern and the female preference preference co-evolve (Kostarakos541

and Hedwig, 2012; Gabel et al., 2016; Stout et al., 1983; Doherty and Storz, 1992; Shaw and542

Herlihy, 2000), saltatory evolution by jumping between fixed resonant peaks would lead to multi-543

modal distributions of song parameters and song preferences in closely related species. While by544

no means ultimate since it is based on a small set of song data, our preliminary finding that the545

songs of seven species in the genus Anurogryllus are trimodally distributed is consistent with this546

prediction. To further test our hypothesis, songs from more species under consideration of phy-547

logenetic data are required. As is female preference data, which would show that females from548

different species also show either multi-peaked responses like A. muticus (Fig. 1C, D) or fall on549

a small number of peaks. In addition, if a species is ”caught in the act” of transitioning from one550

peak to another, we would expect bimodal distributions of female preferences and/or male song551

parameters.552

Given the existence of nonlinear computations in neural networks, the potential for saltatory be-553

havioral evolution exists in every system and it might drive evolution whenever sudden phenotypic554

changes are adaptive.555
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Methods567

Animals568

Behavioral experiments were performed with Anurogryllus muticus from the same colony as used569

in (Erregger et al., 2018). The progeny of individuals caught on Barro Colorado Island in Panama570

were reared to adulthood at the Department of Zoology at the University of Graz in Austria and571

held at 25–28 °C with ad libitum food and water. Starting with the second or third instar, individuals572

were separated from the colony and placed in individual plastic boxes.573

Male song recording and analysis574

Individuals were placed in an array of separate boxes (mean temperature 24.9±1.0°C SD) for575

a duration of 16–24 hours. Each box was equipped with a microphone and isolating foam to en-576

sure acoustic isolation. Using customized software (LabVIEW 7, National Instruments, Austin, TX,577

USA), the microphone (TCM 141 Conrad; Conrad Electronic, Germany) in each box was scanned578

for 800 ms at a time with a sampling rate of 100 kHz and a male was recorded for 20 s if it produced579

sound during that 800-ms interval (Hennig et al., 2016). The song carrier frequency was deter-580

mined from the spectral peak of the raw waveform signal. For analysis of the temporal pattern,581

the normalized envelope of the song signal was computed after signal rectification by squaring582

and low-pass filtering at 200 Hz (equivalent to a temporal resolution of 2.5 ms). Temporal param-583

eters such as pulse and pause duration were calculated when the envelope crossed or fell below584

a threshold value at 10–15% of the signal envelope.585

As a preliminary test of our hypothesis that resonance might drive saltatory evolution, we ex-586

amined the pulse periods of calling songs from six more species of the genus Anurogryllus from587

the literature (Table 2). Aside from A. muticus, only A. toledopizai and A. patos included individual588

specimen measurements. For each of the species for which which only one pulse period was re-589

ported (A. celerinictus, arboreus, nerthus, amolgus), distributions of 10 songs were generated by590

sampling from a Gaussian with the species’ pulse period as the mean and the standard deviation591

from A. muticus.592

Together with the species with individual specimen measurements, we find that roughly 45% of593

these 68 songs fall within either the Ts or 2Ts period harmonics of A. muticus (6 .5 ≤ Ts ≤ 9 ms or594

13 .5 ≤ 2Ts ≤ 17 ms). To test whether this distribution of songs deviates from a random uniform595

distribution we simulated 100,000 trials in which 68 random songs drawn were from a uniform596

distribution between 0 and 40 ms and calculated for each of the 100,000 random distributions597

their overlap with the Ts or 2Ts harmonic bands from A. muticus. The resulting distribution of598

100,000 probabilities was then compared to the observed overlap of 45% and the probability of599

obtaining an overlap of 45% or greater was estimated by approximating the random distribution as600

a Gaussian to be p < 10−12 .601

Species Pulse period (mean±
std)

Sample
Size (N)

Source

A. muticus 8.5±0.3 ms 8 Erregger et al., 2017
A. toledopizai 22.8±0.47 ms 14 Redü and Zefa, 2017
A. patos 7.2±0.22 ms 6 Redü and Zefa, 2017
A. celerinictus 5.8±* ms 23 Walker, 1973
A. arboreus 13.5±* ms 19 Walker, 1973
A. nerthus 14.08±* ms * Walker, 2015
A. amolgos 12.65±* ms * Walker, 2015

Table 2: Song periods and their distribution from seven Anurogryllus species. * indicates that this statistic was not
reported in the source literature.

Female preference functions602

Female preference was tested using a trackball system as described in (Hennig et al., 2016). Fe-603

males, mounted to a metal rod, were placed on a hollow Styrofoam sphere (diameter: 100 mm,604

weight: 1.2–1.8 g) supported by an air stream between two perpendicularly placed loudspeakers605

(Piezo Horntweeter PH8; Conrad Electronic) in a wooden box with sound absorbing foam. Each606
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loudspeaker was calibrated with a Bruel and Kjaer 2231 sound level meter and a half-inch con-607

denser microphone (Bruel and Kjaer 4133 relative to 0.02 mPa, fast reading) at the top of the608

sphere where the female cricket was placed during experiments.609

Digitally stored sound signals were transmitted from a hard disk by a D/A-board (update rate:610

100 kHz, PCI 6221; National Instruments, Austin, TX, USA) to a digitally controlled attenuator611

(PA5; Tucker-Davis, Alachua, FL, USA), amplified (Raveland; Conrad Electronic) and broadcasted612

through the speakers. The longitudinal and lateral movements of the sphere were recorded by613

either a single optical sensor (Agilent ADNS-2051; Agilent Technologies, Santa Clara, CA, USA)614

at the bottom of the half-sphere or by two sensors (ADNS-5050; Avago Technologies, San Jose,615

CA, USA) with a focusing lens positioned laterally at an angle of 90°.616

A silent control was used to monitor baseline walking activity, and a continuous tone was used617

to control for motivation and selectivity of female responses. At the beginning and the end of618

each test session, a species-specific, attractive song signal was presented to control for possible619

changes in phonotactic motivation during a session. For each test signal, the lateral deviation of a620

female during signal presentation for each of the two speakers was averaged and normalized with621

respect to the attractive control signal. The resulting phonotactic scores were therefore typically622

between 0 (no orientation towards the sound signal) and 1 (strong orientation towards the signal),623

although negative scores (orientation away from the signal) and scores higher than 1 (orientation624

towards signal stronger compared to control stimulus) were possible. Test signals and controls625

were presented at 80 dB sound pressure level. All tests included the four control stimuli (silent,626

continuous tone, and an attractive stimulus at the beginning and end of a test) and eight test stimuli627

(total duration was 29 min per test), and were performed at 24°C.628

Phonotaxis values were measured for 75 artificial pulse trains, split into 10 playlists. Each629

playlist was tested with 3-8 females and the phonotaxis values for each stimulus were averaged630

over the females (Fig. S1. All stimulus parameters, phonotaxis values, and number of animals631

are listed in a supplemental data file. From the 75 average phonotaxis values, we generated a632

two-dimensional preference function using natural neighbor interpolation implemented in metpy633

(URL: https://github.com/Unidata/MetPy). The preference function covered pulse and pause634

durations between 0 and 20 ms, with a resolution of 0.1 ms. Negative phonotaxis values in this635

interpolated preference functions were set to 0.636

Modeling637

Stimulus and response data638

Song pulses were constructed as rectangular boxes with an amplitude of 1. While natural pulse639

trains in Anurogryllus last for many seconds, the models tested here have dynamics on the timescale640

of a few tens of milliseconds. To speed up simulations, we therefore used pulse trains with a du-641

ration of 400 ms and omitted onset and offset transients when translating the model output to642

predicted phonotaxis (see below). The stimulus set contained pulse trains with all combinations643

of pulse and pause durations between 0–20 ms sampled on a grid with an interval of 0.5 ms, to-644

talling (20/0 .5)2 = 1600 stimuli. As the fitting target, we used the two-dimensional preference645

function from Anurogryllus females obtained by interpolating the experimental phonotaxis values646

as described above, but on a grid with a step size of 0.5 ms.647

Predicting phonotaxis score from model responses648

The predicted phonotaxis score, p, is given by the average model response r(t) over the stim-649

ulus duration Ds , excluding the first 25 ms and the last 10 ms to reduce the impact of response650

transients: p = 1/(Ds − 35ms)
∫ Ds−10ms

25ms r(t)dt.651

Model fitting652

The models were fitted using the Nelder-Mead method implemented in scipy.optimize.minimize,653

by minimizing the mean-squared error between the interpolated phonotaxis values from the data654

and the model response. If not stated otherwise, initial values for all parameters were set using a655

vector of initial conditions chosen manually to speed up fitting. Fits were run multiple times from656

slightly different initial conditions to avoid getting stuck in local minima. The presented parameter657

values are from models with the lowest error. The model parameters for the simple models are658

listed in Table 3 and for the full network in Table 4. The code and parameters for running all models659

can be found at https://github.com/janclemenslab/anurogryllus-resonance.660
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Autocorrelation model661

In the autocorrelation model (Fig. 2A), the stimulus s(t) is delayed by ∆ac , s∆(t) = s(t − ∆ac).662

A coincidence detector then multiplies s(t) and s∆(t) and scales the result with a gain factor gac :663

r(t) = gac · s(t) · s∆(t). We did not add a nonlinearity to the output r(t), like a sigmoidal, prior664

or after integration, since it did not produce quantitatively different predictions during fitting. The665

autocorrelation model was simulated with a resolution of 10 kHz.666

Rebound model667

The rebound model extends the autocorrelation model by inverting and filtering one of the two668

paths the stimulus takes before coincidence detection to produce offset responses at the end669

of each pulse: sF (t) =
∫ T

0 −s(t − τ) · h(τ)dτ . The filter h(τ) consists of two lobes, defined as670

rectangular windows: An inhibitory lobe with negative gain gi and duration Ti , followed by an671

excitatory lobe with positive gain ge and duration Te . The positive response components in sF (t)672

corresponding to the rebound are isolated using a rectifying linear function: sR(t) = f (sF (t)), where673

f (x) = 0 if x ≤ 0 , and f (x) = x if x = 0 . The coincidence detector then multiplies sR(t) and s∆(t):674

r(t) = sR(t) · s∆(t). The rebound model was simulated with a resolution of 4 kHz to accelerate the675

fitting process.676

Rebound model with feed-forward inhibition677

The rebound model with feed-forward inhibition extends the simple rebound model by including an678

additional inhibitory connection to the basic rebound model following coincidence detection (See679

Fig S2A). The added inhibitory path from stimulus to output (LN4) contains a bi-phasic filter with680

rectangular negative and positive lobes (similar to the filter in the rebound model) and a delay. The681

negative components of the output of the bi-phasic filter were then used as an inhibitory input to an682

LN4-like output neuron. The LN4-like neuron combines the inputs from the coincidence detector683

and the feed-forward inhibitory paths. To obtain the predicted phonotaxis value for a given stimulus,684

the output of the LN4-like neuron was passed through a rectifying linear function with threshold685

θrelu = 0 and a linear gain grelu = 1 and then integrated. When fitting this model, the parameters686

of the simple rebound model fitted previously were kept fixed and only the additional parameters687

for the feed-forward inhibition branch (the delay time and the gain and duration of the inhibitory688

and excitatory lobe) were adjusted.689

Resonate-and-fire neuron690

The resonate-and-fire model was implemented following Izhikevich (2001):691

dx
dt = b ∗ x − ω ∗ y + gs ∗ s(t)

692
dy
dt = ω ∗ x + b ∗ y

where x is a current-like variable, y is a voltage-like variable, b is the damping factor, ω is the
intrinsic frequency, s(t) is the song input and gs is the gain of the song input. If y exceeds the
threshold ythreshold = 1 , a spike with amplitude grb is elicited and current and voltage are reset to
xreset = 0 and yreset = 1 :

y =

{
x = xreset and y = yreset , if y ≥ ythreshold

y , otherwise
(1)

The differential equations were numerically integrated using the Euler method with a time step693

of 0.1 ms.694

Full model of the song recognition network in G. bimaculatus695

To test whether the song recognition network from G. bimaculatus described in Schöneich et al.696

(2015) can reproduce the resonant behavior of Anurogryllus, we used the model of the network697

from Clemens et al. (2020). This model was fitted to reproduce the response dynamics and the698

tuning of all neurons in the network using electrophysiological recordings fromG. bimaculatus for a699
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Model Parameter name Parameter
value

Autocorrelation delay∆ac 17.0 ms
output gain gac 0.21

Rebound delay∆rb 22.93 ms
filter inhibitory gain gi 0.045
filter inhibitory duration Ti 5.06 ms
filter excitatory gain ge 0.1
filter excitatory duration Te 2.00 ms

Rebound with feed-forward inhibition delay∆ffi 7.29 ms
(remaining parameters were taken filter inhibitory gain gfi 1.01
from the rebound model) filter inhibitory duration Tfi 2.43 ms

filter excitatory gain gf e 0.63
filter excitatory duration Tf e 2.45 ms

Resonate and fire frequency fr&f = ω/2/π 109.34 Hz
damping b -0.0005
input gain gs 0.027
output gain grb 0.0025

Table 3: Parameters of the simple models fitted to reproduce the Anurogryllus preference function.

large set of pulse train stimuli (Kostarakos and Hedwig, 2012; Schöneich et al., 2015). The forty-700

five parameters in the network model were fitted using the Nelder-Mead optimization algorithm,701

by minimizing the mean-square error between experimental and predicted phototaxis values (see702

Table 4 for the fitted parameters) using the parameter values found for G. bimaculatus as a start703

point. Several rounds of optimization were required to converge on the given parameter set, with704

Gaussian-distributed noise added to all parameters at the start of the initial optimization rounds to705

avoid undesirable local minima. Model fitting often yielded models that reproduced the tuning of706

Anurogryllus with only transient responses at the onset of the pulse train. Given that Anurogryllus707

song lasts multiple seconds and elicits phonotaxis throughout, we deemed these solutions physio-708

logically unrealistic. We therefore added the constraint that responses of AN1 in the model should709

spike throughout the stimulus for pulse trains with conspecific parameters.710

Cell Component Parameters
AN1 Filter excitatory lobe (Gaussian) width σ=3.88, duration = 7.59 ms, input delay

= 2.26 ms
Filter inhibitory lobe (Gaussian) width σ = 3.81, gain γ = 0.87, duration 293.04

ms
Nonlinearity (Sigmoidal) slope = 10.33, shift = 0.62, gain = 1.19, base-

line = −0.29
Adaptation (Divisive normalization) timescale τ = 9999.93 ms,

strength w = 85.75, offset x0 = 1
LN2 Input from AN1M Delay = 7.59 ms, gain = 1.93

Filter excitatory lobe (Gaussian) width σ = 9.76, duration = 11.87 ms, gain =
0.59

Filter inhibitory lobe (Exponential) decay τ = 15.87 ms, duration N = 1000 ms
Nonlinearity (Rectifying) threshold = 0, gain = 4.22

LN5 Input from LN2 Delay = 13.13 ms, gain = .43
Postsynaptic filter (Differentiated Gaussian) width duration N = 8.94 ms, gain

of the excitatory lobe = .41
Postsynaptic nonlinearity (Rectifying) threshold = 0, gain = 0.57

Rebound filter excitatory lobe (Gaussian) width τ = 0.02, duration = 5.18 ms, gain = -
0.007

Rebound filter inhibitory lobe (Exponential) decay τ =17.29 ms, gain = 6.5 duration N =
1000 ms
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Nonlinearity (Rectifying) threshold = 0, gain = 0.006
LN3 Input from AN1 Delay = 16.59 ms, gain = 0.65

Input from LN5 Delay = 9.67 ms, gain = 43.73

Postsynaptic nonlinearity (Rectifying) threshold = 0.24, gain = 6.82
Adaptation (Divisive normalization) timescale τ =1463.98 ms,

strength w = .16
Nonlinearity (Rectifying) threshold = 5.1, gain = 3.51

LN4 Input from LN2 Delay = 11.44 ms, gain = -58.26
Input from LN3 Delay = 7.15 ms, gain = 3.75
Nonlinearity (Rectifying) threshold = -0.003, gain = 6.82

Table 4: Parameters of the 5 neuron ”mother network” model fitted to reproduce the Anurogryllus preference
function.

Modeling jumps between resonant peaks with spike-frequency adaptation711

To demonstrate that individual resonant peaks can be isolated from a resonant response field, we712

added to the rebound model fitted to the Anurogryllus data (Fig. 3, same parameters as in Table713

3) a leaky integrate and fire neuron with an adaptation current (LIFAC) using the code published714

with Benda (2021). The LIFAC model is driven by the non-integrated output of the rebound model715

and acts as band-pass filter, because it combines the low-pass properties of a cell membrane and716

high-pass properties from adaptation (Benda and Herz, 2003). The total spike output from the717

LIFAC model for each stimulus is passed through a rectifying linear function with threshold θrelu718

and a linear gain grelu = 1 , to compute the predicted phonotaxis value.719

The LIFAC neuron responds to a current input I by increasing the membrane potential V from720

which an adaptation current A is subtracted:721

τm
dV
dt = −V + I − A (2)

τada
dA
dt = −A (3)

with time constants of the membrane and of adaptation, τm and τada, respectively. If the voltage722

V reaches the spiking threshold Vthres , a spike is elicited, and V is reset to Vreset and the adaptation723

current strength A is incremented by α:724

V =

{
Vreset and A = A + α, if V ≥ Vthres

V , otherwise
(4)

Each spike initiates a refractory period τref , during which both V and A are fixed to their reset725

values.726

Period Parameter name Parameter
value

shared Spike Refractory Period τref 1 ms
Adaptation Time Constant τada 5 ms
Adaptation Strength α 10 mV
Spike Threshold Vthres 0.5 mV

4 ms Membrane Time Constant τm 4 ms
Threshold θrelu 125 spikes

8 ms Membrane Time Constant τm 8.8 ms
Threshold θrelu 72 spikes

16 ms Membrane Time Constant τm 12 ms
Threshold θrelu 0 spikes

Table 5: Parameters of the rebound model with adaptation shown in Fig. 6G.
The first four parameters in the table are shared between all variants of the model. Resonant peaks at 4, 8, and 16 ms are
isolated by adjusting the membrane time constant, τm, and the threshold of the rectifying linear function, θrelu .



Supplemental Information727

Peak Females tested p-value
Ts/2 (4.5 ms) 7 0.058
Ts (8.5 ms) 7 0.006
2Ts (17 ms), high DC 4 0.002
2Ts (17 ms), low DC 7 0.007

Table S6: Statistical tests for each peak in the Anurogryllus phenotype (Related to Fig. 1).
P-values were obtained from a paired one-sided t-test testing the hypothesis that the responses of the individuals to songs
at the peak are greater than a silent control. All peaks, except for the peak at Ts/2 , are significant. The broad peak at
2Ts for low DC was evaluated using two points within this peak for which different sets of females were tested. The stimuli
for these low DC points have either a pause of 12.5 ms and a duration of 4.5 ms, or a pause of 11.2 ms and a duration of
5.8 ms. The high DC condition for 2Ts was evaluated at a pause of 2.8 ms and a duration of 14.2 ms.
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Figure S1: Pulse train stimuli used for estimating the pulse-pause field (PPF) (Related to Fig. 1).
Individual pulse trains for which phonotaxis values were measured are shown as red dots. The PPF (color coded, see color
bar) was obtained by natural neighbor interpolation of the phonotaxis values on a dense 41x41 grid (all combinations of
pulses and pauses between 0 and 20 ms with a step size of 0.1 ms). Phonotaxis values at the boundaries (pulse or pause
0 ms) were set to 0.
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Figure S2: A combination of rebound and feed-forward inhibition are sufficient to create the tuning of Anurogryl-
lus. (Related to Fig. 5).
A Schematic of the rebound model with delayed feed-forward inhibition. An LN4-like neuron receives input from the coin-
cidence detector of a rebound model and from inhibition. The output of
B PPF illustrating the responses produced by the modified rebound model fitted to behavioral data from Anurogryllus
(Fig.1C, see color bar), demonstrating the restored bimodal shape of the 17 ms period transect. Colored lines correspond
to the DC and period transects shown in C and D.
C Period tuning of the model for different DCs.
D DC tuning for three different pulse periods, corresponding to Ts/2 , Ts , and 2Ts . The curves indicate bandpass pref-
erence around the male calling song Ts , and bimodal DC tuning for the 2Ts peak. Vertical lines correspond to the DCs
shown in C.
E Example traces showing how the delay timing of inhibition (blue) interacts with the coincidence detection output (grey)
to produce bimodal tuning along the 2Ts 17 ms period transect. Inhibition at 50% DC coincides with the timing of the
coincidence detection output, fully suppressing responses.
F DC tuning of the rebound output (grey) vs the feed-forward inhibition (blue) for the 2T 17 ms transect, which produces
the final bimodal tuning (green) as observed in the behavior data.
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