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Abstract 
Sensory neurons encode information using multiple nonlinear and dynamical transformations. For 
instance, auditory receptor neurons in Drosophila adapt to the mean and the intensity of the stimulus, 
change their frequency tuning with sound intensity, and employ a quadratic nonlinearity. While these 
computations are considered advantageous in isolation, their combination can lead to a highly 
ambiguous and complex code that is hard to decode. Combining electrophysiological recordings and 
computational modelling, we investigate how the different computations found in auditory receptor 
neurons in Drosophila combine to encode behaviorally-relevant acoustic signals like the courtship song. 

The computational model consists of a quadratic filter followed by a divisive normalization stage and 
reproduces population neural responses to artificial and natural sounds. For general classes of sounds, 
like band-limited noise, the representation resulting from these highly nonlinear computations is highly 
ambiguous and does not allow for a recovery of information about the frequency content and amplitude 
pattern. However, for courtship song, the code is simple and efficient: The quadratic filter improves the 
representation of the song envelope while preserving information about the song’s fine structure across 
intensities. Divisive normalization renders the presentation of the song envelope robust to the relatively 
slow fluctuations in intensity that arise during social interactions, while preserving information about the 
species-specific fast fluctuations of the envelope. 

Overall, we demonstrate how a sensory system can benefit from adaptive and nonlinear computations 
while minimizing concomitant costs arising from ambiguity and complexity of readouts by adapting the 
code for behaviorally-relevant signals. 
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Introduction 
Sensory receptor neurons transform physical stimuli into neuronal representations. Constraints in 
neuronal dynamic range and bandwidth result in neural codes that represent some aspects of the 
stimulus at the cost of others, typically through multiple nonlinear and dynamical computations. For 
instance, sensory neurons are known to adapt to the statistics of their inputs: Visual systems adapt to the 
luminance and contrast of a visual scene, and auditory systems to the frequency and intensity statistics 
of the soundscape (Kastner and Baccus, 2014; Nagel and Doupe, 2006). Adaptation creates energy-
efficient representations and improves stimulus discrimination (Benda and Hennig, 2008; Fairhall et al., 
2001; Finn et al., 2007; Gorur-Shandilya et al., 2017; Laughlin, 1981). Adaptation can act on two 
properties of the mapping from stimulus to neural response: 1) how inputs are integrated in time and/or 
space (filtering), and 2) how the integrated input is transformed into spikes (gain) (Atick and Redlich, 
1990; Attneave, 1954; Barlow, 1961; Carandini and Heeger, 2012; Laughlin, 1981; Nagel and Wilson, 
2011; Zhaoping, 2006). However, while adaptive filtering and gain improve information transmission, 
they also remove information, for instance about absolute light or sound intensity levels. This introduces 
ambiguity for neural computations in downstream circuits since the meaning of a spike – the pattern and 
magnitude of the stimulus it represents – will depend on the stimulus history (Fairhall et al., 2001; Haak 
and Mesik, 2016; Seriès et al., 2009; Whitmire and Stanley, 2016; Zavitz et al., 2016). This ambiguity is 
desirable when it introduces invariances to intensity or contrast, but it may distort neural readouts if the 
adaptation affects behaviorally-relevant stimulus features (Fairhall et al., 2001; Hildebrandt et al., 2015). 

Like adaptation, other strongly nonlinear computations are beneficial for making explicit some stimulus 
features at the cost of distorting others. For instance, the recognition of acoustic signals – such as 
speech – typically relies on two features of a sound: 1) the carrier, or fast oscillations that define the fine 
structure of the waveform, and 2) the envelope, relatively slower modulations of the intensity or variance 
of the carrier. A quadratic output nonlinearity produces responses that depend on the magnitude but not 
on the sign of an input stimulus. This operation is considered crucial for extracting the envelope but it 
introduces ambiguity about the structure of the carrier. Importantly, the impact of this ambiguity on 
decoding depends on the stimulus: For spectrally simple, pure-tone carriers, a quadratic nonlinearity 
produces frequency doubling responses, from which the stimulus frequency can be easily recovered. 
However, if the carrier is spectrally complex, the frequency content of the stimulus cannot generally be 
recovered after a quadratic nonlinearity.  

Thus, unbiased measures based on information transmission on generic stimulus ensembles can be 
insufficient to assess the performance of a neural code because the impact of sensory computations, like 
adaptation or quadratic nonlinearities, is context-specific. A code’s performance depends on the statistics 
of the stimuli the system processes, and on the features the system aims to extract from the stimuli to 
drive behavior (Gomez-Marin and Ghazanfar, 2019). 

We address this issue in the auditory receptor neurons of Drosophila melanogaster. Hearing is important 
for courtship behavior (Coen et al., 2014): Males chase the female and produce a dynamical courtship 
song by vibrating their wing. The song of Drosophila melanogaster males contains two major modes: 
The sine song consists of sustained oscillations with a frequency around 150 Hz, and the pulse song 
consists of regular trains of short pulses that can have two distinct shapes (Arthur et al., 2013; Clemens 
et al., 2018a). Females — but also nearby males — evaluate both the spectral and the temporal 
properties of the song to inform social interactions (Deutsch et al., 2019; Li et al., 2018; Versteven et al., 
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2017). Mechanoreceptor neurons in the fly’s ear (its antenna) must therefore maintain the carrier and the 
envelope of the song for further processing downstream. In addition to acoustic communication, flies also 
detect and avoid threats based on sudden increases in the sound envelope (Lehnert et al., 2013).  

Flies detect sound using the arista, a feathery extension of the antenna (Fig. 1A). Sound-induced 
antennal vibrations, but also slow antennal movement induced by wind and gravity, activate a diverse 
population of stretch-sensitive mechanoreceptors in the antenna’s second segment – the Johnston’s 
organ neurons (JONs) (Kamikouchi et al., 2009; 2006; Yorozu et al., 2009). While some types of JONs 
encode slow antennal movement induced by wind- and gravity (JONs C and E) (Yorozu et al., 2009), the 
JON-A and JON-B subpopulations respond best to fast, sound-induced antennal vibrations in the 
frequency range of the courtship song (100-400 Hz) and act as the auditory receptor neurons. These 
auditory JONs perform multiple nonlinear computations that are thought to improve the representation of 
sounds (Fig. 1B): JONs adapt to the mean and to the variance of receiver movement (Albert et al., 2007; 
Clemens et al., 2018b; Lehnert et al., 2013). Mean adaptation renders responses robust to slow antennal 
movement induced by wind and gravity. Variance adaptation corrects for slow intensity fluctuations, 
which arise during the dynamical social interactions from the strongly directional and distance-dependent 
sound receiver (Bennet-Clark, 1971; Morley et al., 2012). The extracellularly recorded bulk spiking 
activity of JONs A and B  – the compound action potential (CAP) (Clemens et al., 2018b; Kamikouchi et 
al., 2009; Lehnert et al., 2013) (Fig. 1A) – exhibits frequency doubling responses for sinusoidals. For 
instance, a 300 Hz sinusoidal evokes 600 Hz oscillations in the CAP (Eberl et al., 2000; Lehnert et al., 
2013; Tootoonian et al., 2012) (Fig. 1B). This frequency doubling can be reproduced mathematically by 
squaring the sinusoidal, indicating a quadratic transformation for sound across the JON population. Yet 
another computation performed by JONs is adaptive temporal filtering: the cutoff frequency of the 
antennal receiver increases with intensity (Nadrowski and Göpfert, 2014) and this effect is linked to the 
mechanical amplification of low-amplitude sounds in JONs (Albert and Kozlov, 2016; Göpfert et al., 2006; 
2005; Göpfert and Robert, 2003). 
 
To understand how diverse computations (mean and variance adaptation, frequency doubling, and 
adaptive temporal filtering) combine in JONs to encode the song’s carrier and envelope, we built a 
computational model of the JONs based on CAP recordings. We relied on CAP recordings, since they 
are currently the only readout of JON responses with sufficient resolution and allow all of the above 
computations to be measured. The model reproduces all major features of the responses for a wide 
range of stimuli including the courtship song, and shows that different adaptive and nonlinear 
computations produce an efficient representation of song. That is, a representation that, despite the 
complexity of the transformation from sound to response in JONs, is easy to read out and allows a 
reconstruction of the behaviorally relevant features of the song’s carrier and envelope with little 
ambiguity.  
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Figure 1: A quadratic filter with a divisive normalization stage reproduces JON responses to a wide range of stimuli. 
A Schematic of the early auditory system of Drosophila and recording location. Sound-induced vibrations of the arista induce 
antennal rotations and activate antennal mechanosensory neurons – the Johnston’s organ neurons (JONs). The compound 
action potential (CAP) represents the activity of sound-responsive JONs and can be recorded using an electrode inserted 
into the joint between the 1st and 2nd antennal segment. 
B Left: Fast oscillation (carrier, gray line) with a slowly varying baseline (mean, orange line) and slow and fast (gray boxes) 
fluctuations of the intensity (variance, black line). Right: Schematic illustration of four JON computations evident from the 
CAP (the response feature that changes in subsequent rows is marked in red).  
C Structures of the tested models. The linear-nonlinear (LN, top) model consists of a linear filter followed by a static 
nonlinearity. The quadratic filter (QF, middle) model consists of a quadratic filter w/o a nonlinearity. The QF-DN (bottom) 
model is a quadratic filter with a divisive normalization (DN) stage. 
D, E, F CAP (black) and model (colored lines) responses of the three different models in C (rows 2-4) for different stimuli (top 
row). “Noise” (D) corresponds to bandpass filtered white noise with constant intensity. “Step” (E) is noise with step-wise 
changes in intensity every 100 ms. “Song” (F) corresponds to male courtship song and contains sustained oscillations, called 
sine song, and trains of transient pulses. Data from one representative fly. 
G, H Comparison of the performance (coefficient of determination r2 between the CAP and model response) for the different 
models and stimuli in C-F (color coded, see legend). Points correspond to recordings from individual flies. The LN model 
performs poorly for all stimuli. The QF model performs well for stimuli with a constant intensity (noise), but poorly for stimuli 
with dynamical intensity profiles (step, background, song). The QF-DN model performs well for all stimuli. “Background” is 
not shown in D-F and is a noise stimulus of mostly constant amplitude with brief changes in intensity (see Fig. S5). Number 
of flies for noise/step/background/song is 6/5/9/5. 
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Results 

A quadratic filter and a dynamic normalization stage reproduce CAP responses 

To fit a model that captures the multiple computations in JONs (Fig. 1B), we recorded CAP (compound 
action potential, representing the summed activity of many JONs) responses for stimuli with diverse 
carrier and envelope dynamics (Fig. 1C): Gaussian noise band-pass filtered between 100 and 900 Hz 
(termed “noise” from here on) with constant intensity (Fig. 1D) or with step-wise modulations in amplitude 
(Fig. 1E); and the natural courtship song, which exhibits narrow-band carriers and strong amplitude 
modulations (Fig. 1F). 
 
A common framework for describing the stimulus-response mapping of sensory neurons is the linear-
nonlinear (LN) model (Schwartz et al., 2006; Sharpee, 2013) in which the stimulus is 1) linearly filtered to 
account for temporal integration properties and 2) transformed by a static nonlinearity to account for 
neuronal threshold or saturation (Fig. 1C, top). However, a LN model fails to reproduce the nonlinear 
CAP responses (Fig. 1D-F, top, 1G). A quadratic filter (QF, Fig. 1C, middle) reproduces the fine structure 
of responses to noise stimuli with constant intensity well but fails for stimuli with dynamic switches in 
intensity (Fig. 1D-G). For instance, the QF output lacks the response transients after intensity steps and 
the relative intensity invariance of the steady-state responses (Fig. 1E, F). To reproduce this adaptive 
gain, we added a divisive normalization (DN) stage after the QF (Fig. 1C, bottom). The DN stage was 
placed at the output of the QF because variance adaptation arises in the JONs after mean adaptation 
and frequency doubling (Clemens et al., 2018b; Lehnert et al., 2013). The DN stage low-pass filters the 
rectified QF output to an adaptation signal, which then divides the QF output to normalize the response. 
Adding the DN stage greatly improved model performance for stimuli with dynamic envelopes, in 
particular for the courtship song (Fig. 1E, F, H).  
 
We term this two-stage model – consisting of a quadratic filter (QF) followed by a divisive normalization 
(DN) stage – QF-DN. The model reproduces responses to a wide range of stimuli enabling us to 
examine how both quadratic filtering and divisive normalization contribute to the representation of song 
features in JONs. We first focus on the properties of the quadratic filter. 
 
The quadratic filter is a frequency-dependent encoder of sound carrier and envelope 
A linear filter corresponds to a set of weights h(τ) for the stimulus s(t-τ) at τ time steps in the past: r(t) = 
∑τ h(τ)s(t-τ) (Fig. 1C, top). A quadratic filter also constitutes a set of weights, H(τ1, τ2), but for the 
product of stimulus values at different delays τ1 and τ2: r(t) = ∑τ1,τ2 H(τ1, τ2) s(t-τ1)s(t-τ2) (Fig. 2A). While 
a linear filter can be easily interpreted given its set of weights h – for instance, purely positive filters 
smooth the stimulus while filters with positive and negative lobes are band-pass filters – understanding 
the stimulus selectivity of a QF directly from its weight matrix H is challenging. We hence approximated 
the QF in terms of a bank of LN models with quadratic output nonlinearities, obtained through eigenvalue 
decomposition of H (Fig. 2B, S1) (Berkes and Wiskott, 2007; Lewis et al., 2002). The outputs of all LN 
models (Fig. 2C, D) in the filter bank are linearly combined to predict the CAP: r(t) = ∑i σi [∑τ s(t-τ)vi(τ)]2. 
The σi correspond to the eigenvalues of H (Fig. 2E) and provide weights for each LN in the bank, while 
the filters vi are given by H’s eigenvectors (Fig. 2C). Note that the full model includes additional bias and 
linear terms but their contribution to model performance is negligible and these terms were therefore 
omitted in the following analyses (Fig. S1D).  
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Figure 2: The quadratic filter differentially encodes low and high frequencies. 
A The quadratic filter (QF) is a matrix H2(τ1, τ2) that contains weights for the product of stimulus values for different τ. τ=0 
corresponds to the time of the response and negative values to the time before the response. The filter was fitted to CAP 
responses to noise presented at 0.5 mm/s. Filter matrix values are color coded (see color bar). 
B The QF can be transformed into a bank of LN models with quadratic nonlinearities (pictograms) using eigenvalue 
decomposition (Fig. S1). Eigenvectors νi correspond to the filters (see C) and the eigenvalues σi correspond to the weight for 
each eigenvector (see E) in the filter bank. The four eigenvectors with the highest eigenvalues are sufficient to reproduce the 
performance of the full quadratic filter (Fig. S1D) and form, when combined with the nonlinearity and the eigenvalue, LN1-4. 
C Eigenvectors associated with the largest positive (top, ν1 and ν2, red hues) and negative (bottom, ν3 and ν4, blue hues) 
eigenvalues (see E). Each vector was normalized to unit-norm.  
D The relationship between the stimulus filtered by the eigenvectors in C and the response is quadratic. ν1 and ν2 are 
“excitatory” filter pairs since filter outputs with large magnitude increase the CAP. By contrast, ν3 and ν4 are “suppressive”. 
Curves correspond to the average CAP for binned values of the filtered stimulus. 
E Sorted eigenvalues of H2. Values for σ1-4 highlighted in color.  
F, G Latency of the filters (F) and phase delays between the filters in a pair (G). Dots correspond to individual flies; lines 
connect data from the same individual. N=6 flies. See also Fig. S2B-D. 
H Frequency transfer functions of each filter in C. Each filter pair contains a filter that responds to low frequencies (ν1, v4) 
and a filter that prefers high frequencies (ν2, v3). 
I, J Frequency tuning of the phase-locked component at twice the stimulus frequency in the model (I) and the CAP (J). 
Tuning curves were normalized to peak at 1.0. 
K, L Responses of the 4 individual LN (2nd row), filter pairs (3rd row), and the full QF (4th row) to 200Hz (K) and 600Hz (L) 
sinusoidal stimuli (1st row). For low frequencies (K) the four filters combine to produce sustained oscillations at twice the 
stimulus frequency. For high frequencies (L) the QF phase-locks weakly and responds strongly to the stimulus onset. 
All panels except F, G show data from one representative fly. Filter structure is very similar across individuals (see F, G). 
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Overall, eigenvalue decomposition yields a compact description of the computation implemented in 
JONs, since four LN models – corresponding to the four highest-magnitude eigenvalues and vectors – 
are sufficient to reproduce the performance of the QF (Fig. S1B-D).  

The four filters in the filter bank representation are well approximated by Gabor wavelets (Fig. S2A-B). 
The individual Gabor filters have positive and negative lobes and therefore respond only weakly to static 
stimuli and best to fluctuating inputs (Fig. 2C, S2E). This filter shape accounts for mean adaptation in 
JONs, which suppresses responses to static deflections of the antenna. Intriguingly, the four LN units in 
the model form two filter pairs: An “excitatory” filter pair with low latency and a “suppressive“ pair with 
higher latency (Fig. 2C-F). Both filter pairs are similar: The suppressive pair resembles a delayed and 
sign-inverted version of the excitatory pair (Fig. 2C). Within each pair, the filters are phase-shifted by 90º 
and form so-called quadrature pair filters (Fig. 2G). This principal filter structure is independent of the 
stimulus type used for fitting the model (Fig. S3A-D).  
 
Quadrature-pair filters are well known from auditory nerve fibers in vertebrates (Lewis et al., 2002), from 
complex cells in primary auditory and visual cortex of vertebrates (Rust et al., 2005; Tian et al., 2013) 
and from motion-sensitive cells in vertebrate visual cortex or in the Drosophila optic lobe (Borst and 
Helmstaedter, 2015). Canonical quadrature pair filters extract the stimulus envelope, since the 
responses of each filter in a pair combine to a phase-invariant and smooth output that is proportional to 
the stimulus energy (Lewis et al., 2002; Rajan et al., 2013). However, the notion of JONs as envelope 
detectors is at odds with the phase-locking of responses to sound (Fig. 1D-F). This is explained by an 
asymmetry in the frequency tuning of the filters in each pair (Fig. 2H): Quadrature pair filters only work as 
envelope detectors for carrier frequencies at which the two filters have similar response magnitude. In 
JONs, this is the case for frequencies >400 Hz (Fig. 2H, L) and for this high frequency range, each 
quadrature pair represents the stimulus envelope. Since the inhibitory pair is delayed relative to the 
excitatory pair (Fig. 2C, F), JONs only respond to transient increases in stimulus energy (Fig. 2L). The 
filter structure therefore explains aspects of variance adaptation, which induces transient responses, for 
high frequencies (Clemens et al., 2012; Rajan and Bialek, 2013; Slee et al., 2005). Below 400 Hz 
however, only one filter per quadrature pair responds strongly (Fig. 2H, K). In this low-frequency range, 
the QF effectively behaves like two linear filters with a quadratic nonlinearity: It phase-locks at twice the 
carrier frequency just like the CAP and responds in a sustained manner (Fig. 2I-K). The QF thus reveals 
two coding regimes present in JONs: for high frequencies (>400 Hz), JONs encode envelope transients, 
while for low frequencies (<400 Hz), JONs produce phase-locked, more sustained, and frequency-
doubling responses (Tootoonian et al., 2012). 
 
Overall, the properties of the quadratic filter contribute to multiple JON computations, including the 
frequency-doubling, mean adaptation, and variance adaptation at high frequencies. To examine to what 
extent the nonlinear filter is itself adaptive, we examined how the structure of the quadratic filter changes 
with intensity. 
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Figure 3: Antennal mechanics produce adaptive filtering in JON. 
A CAPs (bottom) for a noise patterns (top) of different intensities (color coded, see legend). 
B Structure of the quadratic filter (see color bar) at the lowest (left) and the highest (right) intensity tested. The filter structure 
along the main diagonal narrows with intensity. 
C Latencies (top), durations (middle), and phase delays (bottom) of the four leading eigenvectors (filters) v1-4 (color coded as 
in D) change little with intensity. Lines and error bars represent median±std over 6 flies.  
D Shape (top, intensity color-coded, see legend in A) and cutoff frequency (bottom) of the filters v1-4 for different intensities. 
Filters (top) are from one representative fly. Cutoff frequencies for all filters increase with intensity (r>0.95, p<4x10-4 for all v).  
E Shape (top, example from one fly, intensity color-coded, see legend in A) and cutoff frequency (bottom) for the antennal 
filter for different intensities. The filter describes the transformation from sound stimulus to antennal movement, and is 
measured using laser Doppler vibrometry. The cutoff frequency increases with intensity (r=0.97, p=7x10-5). 
F Accounting for antennal mechanics greatly simplifies the filter structure. In the antQF model, the sound was first filtered 
with the intensity dependent antennal filter (top left) before fitting the QF (top right). The eigenvalue spectrum (bottom) of the 
resulting quadratic filter reveals that two filters (σ’1 and σ’2) are sufficient to reproduce the structure of the antQF (cf. Fig. 2E). 
G Shape (top, example from one fly, intensity color-coded, see legend in A) and cutoff frequency (bottom) for the two 
dominant eigenvectors of the antQF, v’1 and v’2. The filters are slower and change little with intensity compared to the filters 
of the original QF (compare D). r=0.18, p=0.7 (left), r=0.81, p=0.016 (right), slope is negligible in both cases (<1.7Hz/intensity 
doubling). The outliers stem from weak CAP responses to the lowest intensity in one fly (Fig. S4B). 
N=6 flies for C-G. P-values from linear fits to the mean across flies. 
Thin lines in D, E, G (bottom) correspond to individual flies, the thick line to the median across 6 flies. 
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Adaptive temporal filtering arises from adaptive antennal mechanics 
To characterize adaptive processes that shape filter properties, we analyzed QFs fitted to noise stimuli 
for a range of intensities (1/16 to 4 mm/s, Fig. 3A, B, S4A, B). Eigenvalue decomposition of the different 
QFs reveals changes in the relative timing and weight (eigenvalues) of the Gabor filters but most of 
these changes are relatively small (Fig. 3C, S4A). By contrast, a narrowing of the negative lobe of all four 
Gabor filters leads to an increase in their cutoff frequencies by 200 to 500 Hz over the intensity range 
tested (Fig. 3D). This increase in the cutoff frequencies with intensity is consistent with predictions from 
optimal coding theory (Attneave, 1954; Barlow, 1961) and with observations from other systems (Nagel 
and Doupe, 2006; Zhaoping, 2006).  
 
Where does this adaptive temporal filtering arise? Previous studies have shown that the frequency 
tuning of antennal responses to sound is intensity dependent and that this arises from active processes 
driven by mechanotransducer gating in JONs (Göpfert and Robert, 2003; 2002; Nadrowski and Göpfert, 
2014; Riabinina et al., 2011). Measuring antennal movement in response to sound using laser Doppler 
vibrometry, we confirm that the antenna’s cutoff frequency increases with intensity (Fig. 3E, S4C). To 
test whether the adaptive antennal tuning fully explains the changes in QF structure, we decomposed the 
filter into “mechanical” and “neuronal” terms: We first passed the stimulus through the intensity-
dependent antennal filter obtained through vibrometry (Fig. 3E) – the “mechanical” term – and used this 
pre-processed stimulus as an input for estimating a new quadratic filter (Fig. 3F), which now captures the 
remaining “neuronal” processes.  
 
We call this new model “antQF”, short for antennal QF. Accounting for intensity-dependent antennal 
tuning in the model by prefiltering the stimulus drastically simplifies the structure of the resulting 
quadratic filter (Fig. 3F): The new quadratic filter only contains slow components associated with the 
timing of the excitatory and suppressive Gabor filter pairs from the original quadratic filter (Fig. 3B). 
Eigenvalue decomposition shows that the new quadratic filter is well approximated by only two 
eigenvectors (instead of four in the original model). The new eigenvectors lack the fast oscillations found 
in the original filter (Fig. 3G, compare Fig. 3D), demonstrating that these fast oscillations have been 
captured by the mechanical antennal filters in the antQF. Importantly, the shape and the frequency 
preference of the two eigenvectors in the antQF are intensity invariant. This demonstrates that adaptive 
temporal filtering in JONs arises from adaptive antennal mechanics driven by transducer gating, that 
these antennal mechanics are represented by the Gabor filters in the original QF model, and that the 
remaining properties of the QF model likely reflect intensity-invariant JON-intrinsic processes. Note that 
the antQF model is simply a decomposition of the QF model into an intensity-dependent and linear 
“mechanical” term followed by a quadratic “neuronal” term (Fig. 3F). It is identical to the original QF in 
terms of the computations it can perform and the outputs it produces.  
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Figure 4: Divisive normalization explains variance adaptation and the transient responses to changes in intensity. 
A Internal structure of the divisive normalization stage used to model variance adaptation. The output of the QF is rectified 
and low-pass filtered to obtain an adaptation signal which divides the output of the QF. τ and σ control adaptation speed and 
strength, respectively. 
B, C Parameters of the model fitted to responses to different stimulus types (“bg” = background stimulus type). Adaptation 
strength σ (B) changes with the stimulus type but is ≫1.0 for all stimuli, which indicates near complete adaptation for all 
types. Adaptation time constants τ (C) do not change with the stimulus type. Dots correspond to individual flies. N=5/9/5 flies 
for step/background/song. P-values from Tukey-Kramer post-hoc tests after a Kruskal-Wallis test. 
D, E, F Stimulus (D), stimulus envelope (E, grey) and adaptation signal from the model (E, black). The adaptation signal lags 
the changes in stimulus intensity (red arrows). This induces transients in the CAP (F, black) due to over and under 
compensation of the stimulus intensity (red arrows). Vertical black lines in D-F indicate the switches in intensity. The 
horizontal red line in F, depicts the CAP’s steady-state response.  
G, H, I Same as D-F but for song.  
See also Fig. S5. 
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Divisive normalization reproduces the strength and dynamics of variance adaptation 
While the QF explained some aspects of variance adaptation at high frequencies (Fig. 2L), it was not 
sufficient to reproduce the variance adaptation over the full frequency range (Fig. 2K), for instance for the 
courtship song (Fig. 1F, H). Our initial model selection (Fig. 1C-H) had revealed that a divisive 
normalization (DN) stage was required to fully capture the JONs’ adaptive gain (Carandini and Heeger, 
2012). In the DN stage (Fig. 4A), the output of the quadratic filter is divided by an adaptation signal – a 
running estimate of the response gain – obtained by rectification and low-pass filtering the filtered 
stimulus. Two parameters of the DN stage control adaptation strength σ and adaptation speed τ, and 
were fitted to the data.  

The adaptation strength σ varies across stimulus types, but all values are ≫1, consistent with the near-
perfect intensity invariance of the CAP amplitude after adaptation (Fig. 4B, S5J-L). The adaptation time 
constant τ is ~15 ms for all stimulus types (Fig. 4C). The DN stage explains the transient CAP dynamics 
for stimuli with dynamical envelopes (Fig. 4D-I): After rapid changes in intensity, CAP transients arise 
because the adaptation signal lags the stimulus intensity through a delay introduced by the low-pass 
filter in the DN stage (Fig. 4E, H). Through this lagged gain compensation, the adaptation stage briefly 
overcompensates for fast decreases and briefly undercompensates for fast increases in intensity (Fig. 
4F, I). Note, that in the CAP, transients are slower for negative than for positive steps in intensity and our 
adaptation model shows that these asymmetrical dynamics arises from the multiplicative nature of 
adaptation with a single time constant parameter (Fig. S5A-E). 

Overall, the QF-DN model accounts for the adaptive and nonlinear JON responses using two 
computations – quadratic filtering and divisive normalization. Each of these computations comes at a 
cost: The quadratic filter that induces frequency doubling strongly distorts the representation of the 
stimulus fine structure (carrier); the adaptive filtering could introduce further ambiguity into the code for 
carrier because the strength with which particular frequencies are transmitted depends on intensity; and 
adaptation may be too slow or too fast to contribute to an efficient code for transient communication 
signals like the pulse song. We therefore explored whether and how each of these computations 
contribute to an efficient representation of communication signals. 
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Figure 5: Quadratic filtering improves the representation of the sound envelope and yields a simple scheme for 
decoding the carrier frequency of song. 
A Encoder-decoder models used to test the role of a quadratic nonlinearity. The song (grey, envelope in black) is passed 
through a quadratic (blue, top) or a threshold-linear function (red, bottom). Then noise is added, and the response is low-
pass filtered to reconstruct the stimulus envelope. Colored lines depict the envelope reconstruction from the quadratic (blue) 
and the threshold linear (red) encoder, black lines show the envelope of the original stimulus. 
B Reconstruction success (coherence Csr(f) between original and reconstructed envelope) for different frequency 
components of the envelope for quadratic (blue) and threshold linear (red) encoders. The quadratic encoder wins for nearly 
all frequencies. The noise to signal ratio was 0.25. 
C Integral coherence over the range from 1-60 Hz for quadratic (blue) and threshold linear (red) encoders for different noise-
to-signal ratios. This frequency range includes the behaviorally relevant interval between song pulses (25-30Hz). The 
quadratic encoder wins in particular in the low-noise regime. Results are similar when integrating the coherence over the full 
frequency range. 
D 150 Hz sine stimulus (intensity 2 mm/s) (top) and CAP (bottom). 
E Dominant frequency of the CAP response for sinusoidals with different frequencies. Lines correspond to peaks at the 
stimulus frequency (1f) and its double (2f) (see Fig. S6A). 
F Pulse with a carrier frequency of 200 Hz (intensity 2 mm/s) (top) and CAP (bottom). 
G Same as E but for pulses with different carrier frequencies (see Fig. S6B). 
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The quadratic nonlinearities produce a robust code of the song envelope 
We first examined the contribution of the quadratic filter to producing a robust representation of the 
song’s envelope pattern. Canonical quadratic filters encode the sound envelope (Rajan et al., 2013). 
However, as shown above, the JON filter does not act as a canonical envelope encoder for the low 
frequencies typically found in song (Fig. 2H-L). Rather, for the song, the QF acts more like a linear filter 
with a quadratic nonlinearity and produces frequency doubling responses – each cycle in the song’s 
carrier induces two cycles in the response (Fig. 1B, 2K). We reasoned that the frequency doubling could 
improve the representation of the song envelope, since it doubles the temporal resolution of the 
representation of the envelope and may improve coding of higher envelope frequencies. To test this 
hypothesis, we set up two simple encoders: one that squares the stimulus just as in JONs and one that 
simply thresholds the song waveform (Fig. 5A). We then asked how well an optimal linear decoder could 
reconstruct the song envelope from the responses of these two encoders under varying levels of 
response noise. To ensure a fair comparison, we normalized responses of the two encoders to have the 
same average energy before adding noise. Consistent with our intuition, the quadratic encoder transmits 
more information about the song envelope than the threshold linear encoder (Fig. 5B, C). Thus, the 
frequency doubling in the CAP improves the representation of the song envelope. 
 
A simple and unambiguous code for communication signals despite an adaptive and quadratic filter 
The advantage of a quadratic code for coding the envelope comes at a potential cost when reading out 
the carrier structure of the stimulus. Generally, a linear system only produces responses with power at 
frequencies present in the input. For instance, linearly filtering a sinusoid produces another sinusoid of 
the same frequency with a different gain and phase. This simple mapping is fully reversible even for 
spectrally complex stimuli. By contrast, a quadratic filter produces power at frequencies that are pairwise 
combinations of the stimulus frequencies. This includes the frequency doubling seen in the CAP, but also 
combinations of the different input frequencies. For spectrally complex stimuli, this complicates stimulus 
reconstruction since it is unclear which response frequencies existed originally in the stimulus and which 
are the product of the quadratic filter. However, fly communication signals are relatively narrow-band 
over the duration of the quadratic filter and their dominant frequencies are in the range of phase-locking 
in JONs (Fig. 5D, F, compare Fig. 2H-K). In this regime, the quadratic filter’s main effect is that of 
frequency doubling – the dominant frequency in the response is twice of the stimulus carrier frequency. 
This allows a simple readout of stimulus frequency for the continuous sine song and for the transient 
pulse song based on half the dominant frequency of the CAP (Tootoonian et al., 2012) (Fig. 5E, G, S6). 
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Figure 6: Divisive normalization improves pattern recognition across intensities. 
A Two different noise patterns (blue, red) at eight different intensities (color coded, see legend). 
B Responses to the noise patterns in A from the CAP (top) and from QF models with (QF-DN, bottom) and without (QF, 
middle) a divisive normalization stage. 
C Confusion matrices (color coded, see color bar) showing the classifier output for 100, 10-ms-long noise patterns presented 
at 8 different intensities. Diagonal entries correspond to correct classification. Classification performance was quantified 
using Mutual Information. 
D, E tSNE visualization of the CAP, QF, and QF-DN responses for 10 different noise patterns, each presented at 8 different 
intensities. Responses are color coded by intensity (D) or pattern identity (E) (see legends). In the CAP and in a QF model 
with divisive normalization, responses cluster by pattern identity (E, top, bottom). In a model without divisive normalization, 
intensity is encoded by the stimulus magnitude, corresponding to the distance from the center of the point cloud (D, middle). 
F, G Pattern information across intensities for noise (F) and song (G) patterns. CAP and QF-DN responses contain more 
information about pattern across intensities than the QF responses. Dots correspond to individual flies (N=6). 
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Intensity adaptation for song enables robust pattern recognition 
Having shown that the nonlinear adaptive code improves envelope coding while still allowing for a 
relatively simple representation of the sound carrier for the spectrally simple communication signals of 
Drosophila, we next examined whether the timescale and strength of adaptation are sufficient to enable 
robust recognition of song pattern across intensities. This is relevant since sound intensity at the female 
changes drastically during the dynamical courtship because of the angle and distance dependence of the 
arista (Coen et al., 2016; Morley et al., 2012; 2018). To do this, we employed a classifier which uses the 
Euclidean distance between responses to classify the identity of short stimulus patterns across 
intensities (Clemens et al., 2011). We first assessed the ability of the classifier to identify 100 short noise 
patterns, each presented at 8 different intensities (Fig. 6A). In addition to classifying CAP responses to 
these stimuli, we also classified model responses, since this allowed us to directly demonstrate the 
contribution of adaptation by removing the divisive normalization (DN) stage (Fig. 6B, C). Responses of 
the CAP and the model with DN stage cluster poorly by intensity (Fig. 6D) but very well by pattern 
identity (Fig. 6E). By contrast, the responses from a model missing the DN stage represent intensity, not 
pattern identity. Accordingly, the information about stimulus pattern retrieved by the classifier is very high 
for both the CAP and model with DN stage, reaching ~85% of the maximal information (Fig. 6F). For the 
model without DN stage, pattern information is strongly reduced. Thus, intensity adaptation enables 
intensity-invariant classification for noise patterns. However, variance adaptation is incomplete for 
courtship song (Clemens et al., 2018b), since intensity fluctuations in song can be faster than the 
adaptation, calling into question whether adaptation can contribute to the coding of song. We therefore 
also classified stimulus identity for short song patterns of different intensities. We found that the model 
with DN stage reached near-perfect song pattern identification, while the model without adaptation 
yielded much lower information values (Fig. 6G). Combined, these results show that adaptation in 
auditory receptor neurons supports robust, intensity-invariant song-pattern recognition in Drosophila. 

 

Discussion 
Here, we examined how the different computations performed in the JONs affect the representation of 
song in Drosophila. Based on electrophysiological recordings, we built a computational model that 
describes the nonlinear and dynamical mapping from sound to the extracellularly recorded population 
response, the CAP. The model consists of a quadratic filter followed by a divisive normalization stage 
and fully reproduces CAPs for artificial and natural stimuli (Fig. 1). The quadratic filter acts in a 
frequency-dependent manner: For high frequencies (>400 Hz), the filter encodes envelope transients, 
while at the lower frequencies found in the fly’s courtship song, it encodes the envelope but also phase 
locks to the carrier (Fig. 2). The filter’s preferred frequency increases with intensity and by incorporating 
direct readouts of antennal movement, we demonstrated that this adaptive frequency filtering arises from 
antennal mechanics (Fig. 3). Divisive normalization produces the variance (=intensity) adaptation and 
reveals that response transients after fast changes in sound intensity arise from the adaptation signal 
lagging behind the stimulus (Fig. 4). Nonlinear and dynamical computations like adaptive temporal 
filtering and variance adaptation can introduce ambiguities about the carrier and the envelope of sounds, 
which may reduce coding performance. However, we find that these computations improve the 
robustness to noise (Fig. 5) and to fluctuations in intensity (Fig. 6) while avoiding strong ambiguities for 
signals with the statistics of song. 
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Adaptive and quadratic temporal filtering in JONs 
The computation performed by the intensity-dependent quadratic filter at the heart of our JO model can 
be decomposed into three stages (Fig. 2B, 3F): adaptive temporal filters, quadratic nonlinearities, and 
combination of excitatory and suppressive quadrature pairs. First, the adaptive Gabor filters determine 
the intensity-dependent frequency preference of JONs (Fig. 2, 3). By incorporating measures of antennal 
movement into the model, we demonstrated that the mechanical filtering in the antenna fully explains the 
adaptive frequency filtering found in the CAP (Göpfert and Robert, 2003; 2002).  
 
Second, a quadratic nonlinearity processes the filtered stimulus and reproduces the frequency doubling 
responses (Fig. 2K). Since the CAP reflects the bulk spiking activity of all auditory JONs (Clemens et al., 
2018b; Lehnert et al., 2013; Łęski et al., 2013), the origin of the frequency doubling and of the quadratic 
nonlinearity it is still unclear. The frequency doubling could arise in individual JONs that are activated 
twice during the period of the sound carrier – for instance at negative and positive peaks of a sinusoidal. 
Alternatively, responses of JONs with different phase preferences could combine in the CAP to produce 
the frequency doubling (Kamikouchi et al., 2009). Existing anatomical and physiological evidence favors 
a single-neuron origin of quadratic filtering (Lehnert et al., 2013; Pézier and Blagburn, 2013): Responses 
from JON subsets from only one side of the JO exhibit frequency doubling (Pézier and Blagburn, 2013), 
and adaptation to positive steps carries over to reduce responses to negative steps, suggesting that both 
response components arise in the same neurons (Lehnert et al., 2013). Note that our analyses do not 
rule out the existence of a subpopulation of JONs that encodes the song’s carrier via linear phase-
locking responses. Only comprehensive single-neuron recordings from the population of JONs can 
resolve this issue. 
 
In the last stage of the QF, the Gabor filters are combined to produce the filter output (Fig. 2C). The 
Gabor filters form quadrature pairs which are mainly known from higher-order sensory neurons in insects 
and vertebrates (Borst and Helmstaedter, 2015; Rust et al., 2005; Tian et al., 2013). Interestingly, 
quadratic filters with the early excitatory and delayed excitatory quadrature pairs found in JONs are also 
known from the auditory nerve fibers of mammals (Lewis et al., 2002). Typically, quadrature pair filters 
report stimulus energy at specific frequency bands independent of phase (Rajan et al., 2013). However, 
to act as an energy detector, the responses of each filter in a quadrature pair must have similar 
magnitude. In JONs, this is only the case at high frequencies (>400Hz, Fig. 2H, L). For low frequencies, 
only one of the filters in a pair responds strongly and the quadratic filter produces phase-locked 
responses (Fig. 2K). The resulting frequency-dependent code preserves information about fine structure 
for low carrier frequencies through phase locking while maintaining responsiveness to transients in 
sound energy for high carrier frequencies. Note that this split in coding schemes by frequency could stem 
from the CAP largely reflecting synchronous activity across the population of JONs (Leski et al. 2013). 
That is, the lack of a sustained response in the CAP for higher stimulus frequencies may stem from a 
breakdown of phase-locking, not a reduction in firing rates. However, this is unlikely, since the frequency 
split is also evident from mechanical responses of the antenna, which are not sensitive to neuronal 
phase locking but which show strongly reduced sensitivity for frequencies >400 Hz, just like the CAP. 
The combination of the early excitatory and the delayed suppressive quadrature pair (Fig. 2C-F) 
produces transient responses for high frequencies in JONs (Fig. 2H-L). In olfactory receptor neurons, a 
similar delayed-suppressive operation – modeled with a biphasic filter – describes the transformation 
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from transduction current to spiking (Nagel and Wilson, 2011). Whether or not this component of the 
model maps to the spike generation remains to be tested. 
 
Organization of mean and variance adaptation in JONs 
JONs implement two forms of adaptation – to the mean and to the variance of the physical stimulus. 
Previously, an abstract model backed by experimental data suggested that mean and variance 
adaptation arise serially in JONs, with mean adaptation occurring before variance adaptation (Clemens 
et al., 2018b). The more detailed model in the present study confirms this result. Mean adaptation arises 
in the first stage of the model: The Gabor filters (Fig. 2C) respond only to fluctuating stimuli and do not 
transmit static or very slow input components corresponding to the stimulus mean (Fig. S2E). The Gabor 
filters represent active antennal mechanics driven by the gating of mechanotransduction channels (Fig. 
3E-G), consistent with previous results that show that mean adaptation is visible at the level of antennal 
mechanics (Albert et al., 2007). The other form of adaptation found in JONs – to stimulus variance – is 
produced in two stages in the model: First, the delayed-suppressive operation that combines the two 
quadrature pairs in the quadratic filter suppresses sustained responses to high frequencies (>400Hz). 
Second, the divisive normalization in the last stage of the model corrects for sound intensity at low 
frequencies to produce variance adaptation over the full frequency spectrum (see Fig. 4A, E, H). This is 
consistent with experimental results that show that variance adaptation arises first in the subthreshold 
transduction currents (corresponding to the first operation in the quadratic filter) and is completed after 
spike generation (corresponding to the divisive normalization stage) (Clemens et al., 2018b). The model 
thus confirms existing experimental and modelling results on the implementation of mean and variance in 
JONs. In addition, the model constitutes a valuable computational tool for analyzing changes in mean 
and variance adaptation in genetic mutants to identify the biophysical and anatomical origins of 
adaptation.  
 
JONs produce an efficient and robust representation of song 
Our model demonstrates how different computations – mean adaptation, adaptive temporal filtering, a 
quadratic nonlinearity, and variance adaptation – contribute to an efficient and robust representation of 
courtship song features – in particular, the carrier and the envelope (Deutsch et al., 2019) (Fig. 5, 6). 
First, adaptive temporal filtering (Fig. 3E-H) is consistent with efficient coding principles (Atick, 1992; 
Attneave, 1954; Barlow, 1961): For weak inputs, the preference for lower frequencies favors integration 
and sensitivity. For strong inputs, JONs prefer higher frequencies which leads to more differentiation and 
selectivity. Second, the quadratic nonlinearities produce a representation of the song’s envelope that is 
robust to noise (Fig. 5A-C), because it pools information from positive and negative stimulus 
components. Third, mean adaptation (Albert et al., 2007; Lehnert et al., 2013) uncouples the sensitivity 
of JONs to sound from the baseline position of the antenna (Fig. S2E) – it renders the code for song 
robust to slow antennal movement from wind or gravity (Clemens et al., 2018b). Finally, variance 
adaptation produces a representation of the song that is robust to the fluctuations in intensity arising from 
the dynamical interaction between male and female during courtship (Fig. 6). Adaptation acts as a high-
pass filter whose cutoff frequency is set by the adaptation time constant (Benda and Herz, 2003). In 
JONs, adaptation is fast (Fig. 4), but not too fast – it is sufficiently fast to compensate for the slower 
(<20Hz) intensity fluctuations that arise from the constant changes in position of the singing male relative 
to the female during courtship (Coen et al., 2014). But it preserves the behaviorally relevant intensity 
fluctuations associated with the periodical envelope of the fly pulse song (>20Hz, (Deutsch et al., 2019)). 
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The code for behaviorally relevant classes of sounds is simple despite a complex encoding scheme 
The sequence of highly nonlinear and dynamical computations in JONs results in a complex mapping 
from sound to JON response. A faithful reconstruction of carrier and envelope from this representation is 
impossible for arbitrary sounds, because quadratic coding and adaptation combine to produce an 
ambiguous and stimulus-dependent code. However, sensory neurons like JONs do not serve as general 
and faithful encoders of stimuli but to extract specific features from behaviorally relevant classes of 
sensory signals. Hearing in flies is known to be used for acoustic threat detection and for acoustic 
communication (Kamikouchi et al., 2009; Lehnert et al., 2013). We find that for these signal classes, the 
relevant stimulus features can be extracted from JONs using relatively simple computations despite a 
complex encoding scheme.  
 
In the context of acoustic threat detection, sudden increases in sound energy trigger startle responses 
(Lehnert et al., 2013). JONs accentuate increases in sound energy at frequencies >400 Hz through the 
quadratic filter (Fig. 2L) and at lower frequencies through variance adaptation (Fig. 4). Information 
relevant for acoustic threat direction can therefore be read out directly from the amplitude of JON 
responses by postsynaptic neurons like the giant fiber neuron to trigger startle responses (Pézier and 
Blagburn, 2013). When evaluating the courtship song, flies are sensitive to a wide range of features of 
the envelope and the carrier (Batchelor and Wilson, 2019; Deutsch et al., 2019). The envelope pattern 
can be obtained by low-pass filtering the JON responses (Fig. 5A-C) and this operation is likely 
performed in neurons directly postsynaptic to the JONs (Clemens et al., 2015; Yamada et al., 2018). For 
instance, synaptic currents from JON into AMMC-A2 in the fly brain are low-pass filtered by the synapse 
and the postsynaptic membrane to explicitly encode the envelope (Azevedo and Wilson, 2017). This 
sequence of transformations resembles the root mean square algorithm in which a signal is first squared 
and then low-pass filtered to extract the envelope. The code for carrier is highly ambiguous for arbitrary 
sounds due to the adaptive temporal filtering and the quadratic nonlinearities (Fig. 2, 3). However, for the 
narrow-band and low frequency (100-400Hz) courtship song, the code for carrier reduces to amplitude 
scaling from adaptive filtering (Fig. 2H, 3D) followed by frequency doubling from the quadratic 
nonlinearity (Fig. 2K). From this relatively simple temporal code, the carrier frequency of courtship song 
can be decoded as half of the dominant frequency in the JON response (Fig. 5D-G, (Tootoonian et al., 
2012)). 
 
Conclusion 
Overall, our study highlights the importance of examining sensory systems in the context of behaviorally 
relevant signals. JONs produce a highly dynamical and nonlinear code for sound. This code prevents a 
faithful reconstruction of general classes of sounds in the fly brain. However, JONs function to represent 
specific features from particular classes of sounds. For these behaviorally relevant sounds, the relevant 
features are simple to decode. This match between the behaviorally-relevant signals and the neural code 
is assumed to be a general feature of neural codes (Ryan and Cummings, 2013; Wehner, 1987). We 
here show that shaping a code towards the relevant signals, allows animals to avoid the costs of strong 
nonlinearities in the form of ambiguity and complex decoding while benefitting from improved noise 
robustness and intensity invariance.   
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Methods 
 
Flies 
Virgin females of the Drosophila melanogaster wildtype strain CantonS Tully were used for all 
recordings. Flies were sexed and housed in groups of ~10 at 25°C and a 12:12 dark-light cycle. All 
experiments were performed 2-5 days post eclosion. 
 
Stimulus design and presentation 
Stimuli were generated at a sampling frequency of 10 kHz. Band-limited Gaussian noise (from now on 
termed “noise”) was produced from a sequence of normally distributed random values by band-pass 
filtering using a linear-phase, finite impulse response filter with a pass band between 80 Hz and 1000Hz. 
The effect of intensity on JON responses was estimated using 5 independent noise patterns that lasted 5 
seconds and were presented at intensities of 1/16, 1/8, ¼, ½, 1, 1.5, 2, and 4 mm/s (“noise” stimuli in 
Fig. 1). For probing adaptation, we switched the intensity of the noise every 100ms in a sequence that 
contained all transitions between ¼, ½, 1 and 2 mm/s (“step” stimuli in Fig. 1). The effect of adaptation 
on intensity tuning was assessed using a noise stimulus at intensities ¼, ½, 1, 2, 4 mm/s (adaptation 
background) whose intensity was switched every 120 ms for 20 ms to a probe intensity of 1/16, 1/8, ¼, 
½, 1, 2, 4, and 8 mm/s (“background” stimuli in Figs. 1G, H). To minimize artifacts from abrupt changes 
in sound intensity, each intensity switch in the step and background stimuli had a duration of 1 ms during 
which the intensity was linearly interpolated to the new value. We also assessed responses to natural 
courtship, recorded from a Drosophila melanogaster male courting a virgin female (Arthur et al., 2013; 
Coen et al., 2014) (“song” stimuli). 
 
Sound 
The sound delivery system consisted of i) the analog output of a DAQ card (PCI-5251, National 
Instruments), ii) a 2-channel amplifier (Crown D-75A), iii) a headphone speaker (KOSS, 16 Ohm 
impedance; sensitivity, 112 dB SPL/1 mW), and iv) a coupling tube (12 cm, diameter: 1 mm). 
The stimulus presentation setup was calibrated as in Clemens et al. (2015). Briefly, the amplitude of pure 
tones of all frequencies used (100-1000Hz) was calibrated using a frequency-specific attenuation value 
measured using a calibrated pressure gradient microphone (NR23159, Knowles Electronics Inc., Itasca, 
IL, USA). To ensure that the temporal pattern of the noise stimuli was reproduced faithfully, we corrected 
the presented noise patterns by the inverse of the system’s transfer function, measured using a pressure 
microphone (4190-L-001, Brüel & Kjaer) that was placed at the position of the fly head during recordings. 
 
Electrophysiology 
Extracellular recordings were performed using glass electrodes (1.5ID/2.12OD, WPI) pulled with a 
micropipette puller (Model P-1000, Sutter Instruments). The fly’s wings and legs were removed under 
cold anesthesia and the abdomen was subsequently fixed using low-temperature melting wax. The head 
was fixed by extending and waxing the proboscis’ tip. The preparation was further stabilized by applying 
wax or small drops of UV-curable glue to the neck and the proboscis. The recording electrode was 
placed in the joint between the second and third antennal segment and the reference electrode was 
placed in the eye. Both electrodes were filled with external saline (Murthy and Turner, 2013). The sound 
delivery tube was placed orthogonal to the arista on the side we recorded JON activity form, at a 
distance of 2 mm. The recorded signal was amplified and band-pass filtered between 5 and 5000 Hz to 
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reduce high frequency noise and slow baseline fluctuations induced by spontaneous movement of the 
antenna (Model 440 Instrumentation Amplifier, Brownlee Precision). We ensured that the band-pass filter 
did not distort the recorded signal, e.g. it did not introduce artefactual response transients. We 
subsequently digitized the recorded signal at 10 kHz with the same DAQ card used for stimulus 
presentation (PCI-5251, National Instruments).  
 
Laser-Doppler vibrometry  
Arista movement was measured using laser-doppler vibrometry (Polytec OFV534 laser unit, OFV-5000 
vibrometer controller, Physik Instrumente, low-pass 5 kHz).  
 
 
Data analysis: 
Pre-processing 
The instantaneous amplitude of the CAP was estimated from the envelope of the recorded signal as the 
magnitude of the Hilbert transform (Fig. S5A). Tuning curves from the “background” stimui were obtained 
by averaging the CAP amplitude over the first 8 ms of the probe intensities (see stimulus description 
above). 
 
Adaptation time scale and strength 
The adaptation time scale was estimated from the CAP amplitude traces by fitting an exponential 
function r(t)=r0 + rmax exp(-t/τ) to the falling/rising phases of positive/negative transients after a change in 
intensity from the “step” stimuli (Fig. S5C). 
 
Modelling 
Model Structure 
To reproduce the transfer function from stimulus waveform to CAP waveform, we use the discretized 
Volterra series, which decomposes the transfer function into a constant term h0, a linear term h1, a 
quadratic term H2, and higher-order terms ϵ which we do not consider here: 
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s(t) and y(t) are the stimulus and the CAP response, respectively. h0 describes a constant offset or bias. 
h1 is a linear filter and describes how stimulus values τ time steps into the past are weighted in the 
response. H2 is a quadratic filter and describes how the product of stimulus values at two different time 
steps in the past, τ1 and τ2, are weighted in the response. The linear models in this paper only include 
the h0 and the h1 term. The quadratic filter model (QF) consists of all terms up to and including H2. The 
temporal support of the filters h1 and H2, τmax, describes the memory of the system and was set to 10 ms. 
This duration saturates performance – in initial tests, longer τmax did not improve model performance. 
This is confirmed by the lack of filter structure in h1 and H2 for τ>8 ms (Fig. 2A). 
 
Model fitting 
The individual terms of the model – ho, h1 and H2 – were estimated using linear regression: y’(t) = σ(t)w, 
where y’ is the predicted response and w is a concatenation of the model coefficients: [ho, h1, h2]. 
Exploiting the symmetry of the quadratic filter, H2(τ1, τ2) = H2(τ2, τ1), h2 is a vector containing all upper 
triangular values including the diagonal of H2 (τ1≥τ2). Equivalently, σ(t) is a concatenation of the inputs 
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for each of the model terms: [s0, s1, s2]. For the bias h0, the input s0=1. For the linear filter h1, the input 
s1(τ) corresponds to the stimulus in the 10 ms preceding the response time t: s1(τ)=s(t-τ) for all τmax≥τ≥0. 
To reduce the number of filter coefficients to be estimated, we projected s1 onto a basis composed of 50 
Gaussian bumps with a standard deviation of 0.2 ms (2 samples) and a spacing of 0.2 ms (2 samples), 
with the first bump at 0 ms and the last bump at 10 ms. For the input values to H2, we take the outer 
product of the stimulus values in the 10 ms (100 samples) preceding the stimulus to be predicted: S2(τ1, 
τ2) = s(t-τ1)s(t-τ2). To reduce the number of filter coefficients, we projected each matrix onto a basis 
composed of two-dimensional Gaussian bumps, each bump with a standard deviation of 0.3 ms (3 
samples) and a spacing of 0.2 ms (2 samples) (cf. Rajan et al. (2013)). We exploit the symmetry of S2 
and keep only the unique values of S2 for which τ1≥τ2, flattened into a vector s2. The projection onto 
Gaussian bump bases and the exploitation of symmetry reduces the number of free parameters from 
1+100+100*100=10101 to 1+50+(502+50)/2=1275. 
 
All filter coefficients were then fitted using ridge regression. Ridge regression minimizes the mean-
squared error between the data and the predicted responses and the norm of the filter coefficients: ∑t (y-
y’)2+ α∑i wi2 (Tikhonov and Arsenin, 1977). The first term increases the match between the data and the 
model, the second term penalizes filter weights that do not contribute to improving this match. α controls 
the influence of the penalty term and was chosen using methods and code from (Park and Pillow, 2011). 
Since song is relatively sparse, we only used samples that were within ±100 ms of song for model fitting 
and evaluation. For visualization and analysis of the filters, h1 and H2 were projected from the basis of 
Gaussian bumps back into the temporal domain. 
 
For models that only contain the first two terms (h0, h1), so-called linear-nonlinear models, we estimate 
an output nonlinearity based on methods described in (Schwartz et al., 2006). For the quadratic models, 
the nonlinearity was approximately linear and did not improve performance. We therefore omitted that 
step to simplify model interpretation. 
 
Fitting the antennal filters and the antQF model 
The transfer function from stimulus to antennal movement for each intensity was fitted as a discretized 
Volterra series with terms h0, h1. This model typically explained more than 90% of the variance in 
antennal responses to noise (Fig. S4C). To account for intensity-dependent antennal filters in the 
quadratic model, the intensity-specific antennal filters obtained from one animal were used to pre-filter 
the stimulus before fitting the quadratic model. This was necessary, because simultaneous measurement 
of antennal movement and CAP responses was not possible in our rig. However, antennal filters are 
virtually identical across animals (pairwise Pearson correlation of the filters r=0.97±0.03 across N=5 flies; 
filters from different intensities were concatenated before calculating the correlations). 
 
Fitting QF-DN 
The divisive normalization (DN) stage has the form: 𝑥′ = 𝑥/(𝜎 + 𝛾) where 𝛾 is the gain control signal that 
divides the input x and is given by: 𝛾(𝑡) = ∫ 𝑑𝑣 ∥ 𝑥(𝑡 − 𝑣) ∥ 𝑒'(/#. τ is the adaptation time constant. The 
input to the DN stage, x, is the output of the quadratic filter. The QF-DN model was fitted using an 
iterative procedure: We initialized the filter by fitting a QF model without the DN stage to the data using 
ridge regression. Then, we optimized the parameters of the DN stage, σ and γ, by minimizing the mean 
squared error between the CAP and the model prediction using the matlab function “fmincon”, holding 
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the filter coefficients constant. Lastly, we optimized the filter coefficients, holding the DN parameters 
constant. The model parameters typically converged after 1-2 cycles of fitting the parameters of the DN 
stage and the filter. During the fitting, only the magnitude, but not the structure of the filter changed from 
its initialization. 
 
Model evaluation  
Model performance was quantified using the squared Pearson’s correlation coefficient between the CAP 
and the model predictions. Initial experiments with cross-validation show that train and test performance 
are within ±1% of each other. 
 
QN representations 
To gain insight into the computational structure of the quadratic filter, we presented H2 by its eigenvalue 
decomposition: H2 = ∑i σi vi viT, where the vi and σi are the eigenvectors and their associated eigenvalues 
(Berkes and Wiskott, 2007; Lewis et al., 2002). This representation is useful, since H2 is typically of low-
rank, that is few eigenvector-eigenvalue pairs are sufficient to reconstruct H2 with sufficient fidelity (Fig. 
S1). This representation is equivalent to a bank of linear-nonlinear models with filters vi and quadratic 
nonlinearities y’ = ∑i σi (∑τ vi(τ)s(t-τ))2. 
 
Subspace overlap 
To compare quadratic filters fitted to different stimuli in a manner that is robust to noise, we computed 
the overlap between the subspaces spanned by the four leading eigenvectors. Specifically, given two 
quadratic filters A and B, with eigenvectors viA and viB, the cumulative overlap between the pairs of the K 
largest eigenvectors is given by (1/K ∑iK∑jK (viAT vjB))1/2 (Fig. S3D) (Romo and Grossfield, 2011). 
 
Envelope reconstruction 
To assess the contribution of the quadratic filter to encoding the envelope, we compared the 
performance of two simple encoders: A rectified linear one, which thresholds the stimulus at 0, and a 
quadratic one, which squares the stimulus. For a stimulus that is symmetrical around 0, the quadratic 
encoder will produce more response energy, since the rectified linear one cuts off all negative stimulus 
components. We therefore normalized the output of each of the encoders to unit norm. Gaussian noise 
with standard deviation σ was then added to the normalized outputs and the coherence between the 
model output, r, and the original envelope, e, was estimated from the stimulus: Cer(f) = PerPre/(PeePrr) for 
different noise-to-signal ratios as a measure of decoding accuracy. 
 
Pattern classification 
For pattern classification, we used leave-one-out nearest-neighbor classifier. Each of 100, 10-ms-long 
response patterns was selected as a template and assigned to the class of its nearest neighbor, based 
on the Euclidean distance to the 99 non-template patterns (Machens et al., 2003). This resulted in a 
confusion matrix p(s, s’), which tabulates the joint probability with which a response that was elicited by 
stimulus s was classified as being elicited by any of the stimuli s’. The mutual information of p serves as 
a lower bound on the mutual information between stimulus and response: I(s, r)≥I(s, s’)=∑p(s, s’) log2 
p(s, s’)/(p(s)p(s’)). I(s, s’)=0 if p(s, s’) is uniform, that is if there is no correspondence between the actual 
and the classified stimulus. The maximal value of I(s, s’) is given by the log2 of the number of stimulus 
classes (log2(100)=6.64 for pattern, log2(8)=3 for intensity) for a perfect, one-to-one mapping between 
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stimulus and response. We visualized the similarity structure of the representations using tSNE of a 
random subset of 10 patterns (Maaten and Hinton, 2008). 
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Supplemental Figures 
 
 

 
 
Figure S1: Eigenvalue decomposition and low-rank approximation of the quadratic filter H. 
A Quadratic filter fitted to a noise stimulus (intensity 0.5 mm/s).  
B, C Eigenvalue spectrum of H (B) and cumulative sum of squared eigenvalues (C). The latter corresponds to the fraction of 
variance in H explained. The four eigenvalues with the largest absolute values are marked in color. 
D Performance of QF models using different low-rank approximations of H. The rank corresponds to the number of eigenvalues 
used for representing the quadratic filter, equivalent to the number of LN models in the filter bank. The left-most bar (pink) 
corresponds to a rank-0 model, that only contains a bias and linear term, but no quadratic terms. A rank-4 model (with 4 LN 
models, black outline) is the simplest model with performance close to that of the original full-rank model. Bars show mean over 
flies and dots show values for individual flies connected by lines (N=6 flies). 
E-H Outer product matrix, Vi = viviT, of each of the four leading eigenvectors. The waveforms aligned with the x and y axes show 
the eigenvectors vi (right).  
I-J Sum of the outer-product matrices (weighted by the eigenvalues) for the pairs of excitatory (I, σ1V1+σ2V2) and suppressive (J, 
σ3V3+σ4V4) eigenvectors. The matrix in J is sign-inverted, since σ3 and σ4 are negative (See B). 
K A rank-4 approximation, given by the sum of all 4 outer products ∑ 𝜎&𝑉&'

&() , yields a good reconstruction of H (compare A, D). 
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Figure S2: Performance, Gabor parameters, and responses to static stimuli. 
A The waveforms show an example fit (red) to one of the filters (black). The orange trace shows the Gaussian envelope of the 
filter. 
B The performance r2 for the fits of the Gabor filters to the eigenvectors v1-v4 of H. 
C, D Duration (C) and carrier frequency (D) of the Gabor filters fitted to v1-v4. Dots show and lines connect recordings of 
individual flies (N=6 flies) in B-D.  
E QF output (top, normalized to peak at 1.0) for the static step stimuli with different intensities (top, intensity is color coded, see 
legend). The QF responds to the onsets and offset of the step stimuli. This lack of responses to static stimuli is a correlate of 
mean adaptation. 
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Fig. S3: The filters of models fitted to different stimuli are similar. 
A, B Quadratic filter (A) and four leading eigenvectors v1-v4 (B) for the four stimulus types used in this study. 
C Normalized eigenvalues of the QFs in A for the four stimulus types (“bg” = “background” stimulus). The four eigenvalues for 
each stimulus type were normalized to unit norm to account for differences in filter magnitude. Lines and error bars indicate 
mean ± std over flies. The relative amplitude of the eigenvalues is independent of stimulus type.  
D The subspace overlap measures the match of the hyperplane spanned by the four filters of models fitted to different stimuli 
(B). We take the filters fitted to noise as the reference. Triangles correspond to the subspace overlap for filters estimated for the 
same stimuli in different flies and reflect inter-individual variability. Circles indicate the overlap of filters estimated for different 
stimuli with those estimated for noise. N=6/5/9/5 flies for noise/step/background/song. The filter structure is robust to the 
stimulus type, indicated by the strong overlap between the subspaces spanned by filters fitted to different stimuli.  
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Fig. S4: Model structure and performance for different intensities. 
A Eigenvalues of the QF, σ1-σ4, fitted to noise stimuli of different intensities. 
B Performance (r2) of the QF (black) and the antQF (blue) for different intensities. Each line marks the performance for a given 
fly. Except for one outlier recording both models perform identically, highlighting the computational equivalence of the QF and 
the antQF models. 
C Performance of the linear filter model that describes the transformation from sound stimulus to antennal position for each 
intensity. Each line marks the model performance for a given fly across intensities. 
D Eigenvalues of σ’1 (brown) and σ’2 (green) of the antQF model for different intensities.  
Lines and error bars in A and D indicate mean± std over 6 flies. 
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Fig. S5: The model reproduces the asymmetrical dynamics and the sensitivity effects of adaptation. 
A-B Response magnitudes (CAP envelopes) for white noise with intensity steps (top) in the CAP (A) and the QF-DN model (B). 
Both the CAP and the model exhibit asymmetrical adaptation dynamics: Relaxation to steady state is fast for positive steps 
(yellow hues) and slower for negative steps (blue hues). See legend in C for color code. 
C The effective adaptation time constant in CAP and model response are larger – adaptation is slower – for negative steps than 
for positive steps (blue and yellow points, respectively, see legend). Note that this is despite the model having a single, fixed 
parameter for adaptation speed (B). P-values from one-sided sign test (matched pairs are stimuli with same step size with diff 
sign, black lines) for model and data. 
D, E Linear adaptation signal (D) and the effective adaptation gain (E), given by the log of the adaptation signal for the model 
responses in B. Vertical lines in D mark the beginning and end of the adaptation transients of the adaptation signal from D the 
model. While the adaptation signal itself is relatively symmetrical for increases and decreases in intensity (D), the effective 
adaptation gain – proportional to the logarithm of the adaptation signal – exhibits the asymmetrical dynamics of the CAP (E). 
F, G Intensity tuning curves of the CAP (F) and the QF-DN model (G), adapted to different background intensities (color code, 
see legend). Tuning curves are plotted on an absolute intensity scale (left, vertical colored lines indicate background intensities) 
and with intensity given relative to the background (vertical black line at 1.0 depicts the background). In both the model and the 
data, tuning curves shift with the adaptation proportional to the background intensity. 
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Fig. S6: Decoding the carrier frequency of sine and pulse song from CAP responses. 
A, B CAP power spectra for sine tones (A) and pulses (B) with different carrier frequencies (y-axis) (spectral power of the CAP 
is color coded, see color bars). The carrier frequency and its double are marked as stars and open circles, respectively. The 
frequency of maximum CAP power is marked with a red dot. See Figs. 5D-G. In the frequency range occupied by song (100-
500Hz), the CAP oscillates at twice the carrier frequency for pulse and sine. For higher frequencies, responses are either weak 
(A) or oscillate at very low frequencies (B). 

 
  



30 
 

References 
 

Albert, J.T., Kozlov, A.S., 2016. Comparative Aspects of Hearing in Vertebrates and Insects with Antennal Ears. 
Current Biology 26, R1050–R1061. doi:10.1016/j.cub.2016.09.017 

Albert, J.T., Nadrowski, B., Göpfert, M.C., 2007. Mechanical signatures of transducer gating in the Drosophila ear. 
Current Biology 17, 1000–1006. doi:10.1016/j.cub.2007.05.004 

Arthur, B.J., Sunayama-Morita, T., Coen, P., Murthy, M., Stern, D.L., 2013. Multi-channel acoustic recording and 
automated analysis of Drosophila courtship songs. BMC Biol 11, 11. doi:10.1186/1741-7007-11-11 

Atick, J.J., 1992. Could information theory provide an ecological theory of sensory processing? Network: 
Computation in Neural Systems 3, 213–251. doi:10.1088/0954-898X/3/2/009 

Atick, J.J., Redlich, A.N., 1990. Towards a theory of early visual processing. Neural computation 2, 308–320. 
Attneave, F., 1954. Some informational aspects of visual perception. Psychol Rev 61, 183–193. 
Azevedo, A.W., Wilson, R.I., 2017. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central 

Mechanosensory Neurons. Neuron 1–25. doi:10.1016/j.neuron.2017.09.004 
Barlow, H.B., 1961. Possible principles underlying the transformations of sensory messages. 

doi:10.7551/mitpress/9780262518420.001.0001/upso-9780262518420-chapter-13 
Batchelor, A.V., Wilson, R.I., 2019. Sound localization behavior in Drosophilamelanogaster depends on inter-

antenna vibration amplitude comparisons. J. Exp. Biol. 222, jeb191213. doi:10.1242/jeb.191213 
Benda, J., Hennig, M.R., 2008. Spike-frequency adaptation generates intensity invariance in a primary auditory 

interneuron. Journal of Computational Neuroscience 24, 113–136. doi:10.1007/s10827-007-0044-8 
Benda, J., Herz, A.V.M., 2003. A universal model for spike-frequency adaptation. Neural computation 15, 2523–

2564. doi:10.1162/089976603322385063 
Bennet-Clark, H.C., 1971. Acoustics of Insect Song. Nature 234, 255–259. doi:10.1038/234255a0 
Berkes, P., Wiskott, L., 2007. Analysis and interpretation of quadratic models of receptive fields. Nat Protoc 2, 400–

407. doi:10.1038/nprot.2007.27 
Borst, A., Helmstaedter, M., 2015. Common circuit design in fly and mammalian motion vision. Nature 

neuroscience 18, 1067–1076. doi:10.1038/nn.4050 
Carandini, M., Heeger, D.J., 2012. Normalization as a canonical neural computation. Nature Reviews Neuroscience 

13, 51–62. doi:10.1038/nrn3136 
Clemens, J., Coen, P., Roemschied, F.A., Pereira, T.D., Mazumder, D., Aldarondo, D.E., Pacheco, D.A., Murthy, 

M., 2018a. Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural 
Drivers of Behavior. Current Biology 28, 2400–2412.e6. doi:10.1016/j.cub.2018.06.011 

Clemens, J., Girardin, C.C., Coen, P., Guan, X.-J., Dickson, B.J., Murthy, M., 2015. Connecting Neural Codes with 
Behavior in the Auditory System of Drosophila. Neuron 87, 1332–1343. doi:10.1016/j.neuron.2015.08.014 

Clemens, J., Kutzki, O., Ronacher, B., Schreiber, S., Wohlgemuth, S., 2011. Efficient transformation of an auditory 
population code in a small sensory system. Proc Natl Acad Sci U S A 108, 13812–13817. 
doi:10.1073/pnas.1104506108 

Clemens, J., Ozeri-Engelhard, N., Murthy, M., 2018b. Fast intensity adaptation enhances the encoding of sound in 
Drosophila. Nat Commun 9, 134. doi:10.1038/s41467-017-02453-9 

Clemens, J., Wohlgemuth, S., Ronacher, B., 2012. Nonlinear computations underlying temporal and population 
sparseness in the auditory system of the grasshopper. Journal of Neuroscience 32, 10053–10062. 
doi:10.1523/JNEUROSCI.5911-11.2012 

Coen, P., Clemens, J., Weinstein, A.J., Pacheco, D.A., Deng, Y., Murthy, M., 2014. Dynamic sensory cues shape 
song structure in Drosophila. Nature 507, 233–237. doi:10.1038/nature13131 

Coen, P., Xie, M., Clemens, J., Murthy, M., 2016. Sensorimotor Transformations Underlying Variability in Song 
Intensity during Drosophila Courtship. Neuron 89, 629–644. doi:10.1016/j.neuron.2015.12.035 

Deutsch, D., Clemens, J., Thiberge, S.Y., Guan, G., Murthy, M., 2019. Shared Song Detector Neurons in 
Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Current Biology 29, 3200–3215.e5. 
doi:10.1016/j.cub.2019.08.008 

Eberl, D.F., Hardy, R.W., Kernan, M.J., 2000. Genetically similar transduction mechanisms for touch and hearing in 
Drosophila. J. Neurosci. 20, 5981–5988. 

Fairhall, A.L., Lewen, G.D., Bialek, W., Ruyter, D., 2001. Efficiency and ambiguity in an adaptive neural code. 
Nature 412, 787–792. doi:10.1038/412787a0 

Finn, I.M., Priebe, N.J., Ferster, D., 2007. The emergence of contrast-invariant orientation tuning in simple cells of 
cat visual cortex. Neuron 54, 137–152. doi:10.1016/j.neuron.2007.02.029 



31 
 

Gomez-Marin, A., Ghazanfar, A.A., 2019. The Life of Behavior. Neuron 104, 25–36. 
doi:10.1016/j.neuron.2019.09.017 

Gorur-Shandilya, S., Demir, M., Long, J., Clark, D.A., Emonet, T., 2017. Olfactory receptor neurons use gain 
control and complementary kinetics to encode intermittent odorant stimuli. eLife 6, e27670. 
doi:10.7554/eLife.27670 

Göpfert, M.C., Albert, J.T., Nadrowski, B., Kamikouchi, A., 2006. Specification of auditory sensitivity by Drosophila 
TRP channels. Nature neuroscience 9, 999–1000. doi:10.1038/nn1735 

Göpfert, M.C., Humphris, A.D.L., Albert, J.T., Robert, D., Hendrich, O., 2005. Power gain exhibited by motile 
mechanosensory neurons in Drosophila ears. Proceedings of the National Academy of Sciences of the United 
States of America 102, 325–330. doi:10.1073/pnas.0405741102 

Göpfert, M.C., Robert, D., 2003. Motion generation by Drosophila mechanosensory neurons. Proceedings of the 
National Academy of Sciences of the United States of America 100, 5514–5519. 
doi:10.1073/pnas.0737564100 

Göpfert, M.C., Robert, D., 2002. The mechanical basis of Drosophila audition. J. Exp. Biol. 205, 1199–1208. 
Haak, K.V., Mesik, J., 2016. Adaptation, the Coding Catastrophe and Disaster Management in Natural Vision. J. 

Neurosci. 36, 9286–9288. doi:10.1523/JNEUROSCI.1956-16.2016 
Hildebrandt, K.J., Ronacher, B., Hennig, R.M., Benda, J., 2015. A Neural Mechanism for Time-Window Separation 

Resolves Ambiguity of Adaptive Coding. PLoS Biology 13, e1002096. doi:10.1371/journal.pbio.1002096 
Kamikouchi, A., Inagaki, H.K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M.C., Ito, K., 2009. The neural basis of 

Drosophila gravity-sensing and hearing. Nature 458, 165–171. doi:10.1038/nature07810 
Kamikouchi, A., Shimada, T., Ito, K.E.I., 2006. Comprehensive Classification of the Auditory Sensory Projections in 

the Brain of the Fruit Fly Drosophila melanogaster 356, 317–356. doi:10.1002/cne 
Kastner, D.B., Baccus, S.A., 2014. Insights from the retina into the diverse and general computations of adaptation, 

detection, and prediction. Current Opinion in Neurobiology 25, 63–69. doi:10.1016/j.conb.2013.11.012 
Laughlin, S.B., 1981. A simple coding procedure enhances a neuron's information capacity. 36, 910–912. 
Lehnert, B.P., Baker, A.E., Gaudry, Q., Chiang, A.-S., Wilson, R.I., 2013. Distinct Roles of TRP Channels in 

Auditory Transduction and Amplification in Drosophila. Neuron 77, 115–128. doi:10.1016/j.neuron.2012.11.030 
Lewis, E.R., Henry, K.R., Yamada, W.M., 2002. Tuning and timing in the gerbil ear: Wiener-kernel analysis. 

Hearing Research 174, 206–221. doi:10.1016/S0378-5955(02)00695-0 
Li, X., Ishimoto, H., Kamikouchi, A., 2018. Auditory experience controls the maturation of song discrimination and 

sexual response in Drosophila. eLife 7, e34348. doi:10.7554/eLife.34348 
Maaten, L.V.D., Hinton, G., 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 2579–

2605. 
Machens, C.K., Schütze, H., Franz, A., Kolesnikova, O., Stemmler, M., Ronacher, B., Herz, A.V.M., 2003. Single 

auditory neurons rapidly discriminate conspecific communication signals. Nature neuroscience 6, 341–342. 
doi:10.1038/nn1036 

Morley, E.L., Jonsson, T., Robert, D., 2018. Auditory sensitivity, spatial dynamics, and amplitude of courtship song 
in Drosophila melanogaster. The Journal of the Acoustical Society of America 144, 734–739. 
doi:10.1121/1.5049791 

Morley, E.L., Steinmann, T., Casas, J., Robert, D., 2012. Directional cues in Drosophila melanogaster audition: 
structure of acoustic flow and inter-antennal velocity differences. J. Exp. Biol. 215, 2405–2413. 

Murthy, M., Turner, G., 2013. Whole-Cell In Vivo Patch-Clamp Recordings in the Drosophila Brain. Cold Spring 
Harb Protoc 2013, pdb.prot071704–pdb.prot071704. doi:10.1101/pdb.prot071704 

Nadrowski, B., Göpfert, M.C., 2014. Level-dependent auditory tuning. Communicative & Integrative Biology 2, 7–
10. doi:10.4161/cib.2.1.7299 

Nagel, K.I., Doupe, A.J., 2006. Temporal Processing and Adaptation in the Songbird Auditory Forebrain. Neuron 
51, 845–859. doi:10.1016/j.neuron.2006.08.030 

Nagel, K.I., Wilson, R.I., 2011. Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nature 
neuroscience 14, 208–216. doi:10.1038/nn.2725 

Park, M., Pillow, J.W., 2011. Receptive Field Inference with Localized Priors. PLoS Comput Biol 7, e1002219. 
doi:10.1371/journal.pcbi.1002219 

Pézier, A., Blagburn, J.M., 2013. Auditory Responses of Engrailed and Invected-Expressing Johnston’s Organ 
Neurons in Drosophila melanogaster. PLoS ONE 8, e71419. doi:10.1371/journal.pone.0071419 

Rajan, K., Bialek, W., 2013. Maximally informative “stimulus energies” in the analysis of neural responses to natural 
signals. PLoS ONE 8, e71959. doi:10.1371/journal.pone.0071959 



32 
 

Rajan, K., Marre, O., Tkačik, G., 2013. Learning Quadratic Receptive Fields from Neural Responses to Natural 
Stimuli. Neural computation. doi:10.1162/NECO_a_00463 

Riabinina, O., Dai, M., Duke, T., Albert, J.T., 2011. Active process mediates species-specific tuning of Drosophila 
ears. Current biology : CB 21, 658–664. doi:10.1016/j.cub.2011.03.001 

Romo, T.D., Grossfield, A, 2011. Validating and improving elastic network models with molecular dynamics 
simulations. Proteins 79:23-34. doi:10.1002/prot.22855  

Rowekamp, R.J., Sharpee, T.O., 2011. Analyzing multicomponent receptive fields from neural responses to natural 
stimuli. Network (Bristol, England) 22, 45–73. 

Rust, N.C., Schwartz, O., Movshon, J.A., Simoncelli, E.P., 2005. Spatiotemporal elements of macaque v1 receptive 
fields. Neuron 46, 945–956. doi:10.1016/j.neuron.2005.05.021 

Ryan, M.J., Cummings, M.E., 2013. Perceptual Biases and Mate Choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459. 
doi:10.1146/annurev-ecolsys-110512-135901 

Schwartz, O., Pillow, J.W., Rust, N.C., Simoncelli, E.P., 2006. Spike-triggered neural characterization. Journal of 
Vision 6, 484–507. doi:10.1167/6.4.13 

Seriès, P., Stocker, A.A., Simoncelli, E.P., 2009. Is the Homunculus ''Aware“” of Sensory Adaptation? Neural 
computation 21, 3271–3304. doi:10.1162/neco.2009.09-08-869 

Sharpee, T.O., 2013. Computational identification of receptive fields. Annu. Rev. Neurosci. 36, 103–120. 
doi:10.1146/annurev-neuro-062012-170253 

Slee, S.J., Higgs, M.H., Fairhall, A.L., Spain, W.J., 2005. Two-dimensional time coding in the auditory brainstem. 
Journal of Neuroscience 25, 9978–9988. doi:10.1523/JNEUROSCI.2666-05.2005 

Tian, B., Kusmierek, P., Rauschecker, J.P., 2013. Analogues of simple and complex cells in rhesus monkey 
auditory cortex. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1221062110 

Tikhonov, A.N., Arsenin, V.Y., 1977. Solutions of ill-posed problems. 
Tootoonian, S., Coen, P., Kawai, R., Murthy, M., 2012. Neural Representations of Courtship Song in the Drosophila 

Brain. Journal of Neuroscience 32, 787–798. doi:10.1523/JNEUROSCI.5104-11.2012 
Versteven, M., Vanden Broeck, L., Geurten, B., Zwarts, L., Decraecker, L., Beelen, M., Göpfert, M.C., Heinrich, R., 

Callaerts, P., 2017. Hearing regulates Drosophila aggression. Proc Natl Acad Sci U S A 114, 1958–1963. 
doi:10.1073/pnas.1605946114 

Wehner, R., 1987. “Matched filters” â€” neural models of the external world. Journal of Comparative Physiology A: 
Neuroethology, Sensory, Neural, and Behavioral Physiology 161, 511–531. doi:10.1007/BF00603659 

Whitmire, C.J., Stanley, G.B., 2016. Rapid Sensory Adaptation Redux: A Circuit Perspective. Neuron 92, 298–315. 
doi:10.1016/j.neuron.2016.09.046 

Yamada, D., Ishimoto, H., Li, X., Kohashi, T., Ishikawa, Y., Kamikouchi, A., 2018. GABAergic Local Interneurons 
Shape Female Fruit Fly Response to Mating Songs. J. Neurosci. 38, 4329–4347. 
doi:10.1523/JNEUROSCI.3644-17.2018 

Yorozu, S., Wong, A., Fischer, B.J., Dankert, H., Kernan, M.J., Kamikouchi, A., Ito, K., Anderson, D.J., 2009. 
Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458, 201–205. 
doi:10.1038/nature07843 

Zavitz, E., Yu, H.-H., Rowe, E.G., Rosa, M.G.P., Price, N.S.C., 2016. Rapid Adaptation Induces Persistent Biases 
in Population Codes for Visual Motion. Journal of Neuroscience 36, 4579–4590. 
doi:10.1523/JNEUROSCI.4563-15.2016 

Zhaoping, L., 2006. Theoretical understanding of the early visual processes by data compression and data 
selection. Network: Computation in Neural Systems 17, 301–334. doi:10.1080/09548980600931995 

Łęski, S., Lindén, H., Tetzlaff, T., Pettersen, K.H., Einevoll, G.T., 2013. Frequency Dependence of Signal Power 
and Spatial Reach of the Local Field Potential. PLoS Comput Biol 9, e1003137. 
doi:10.1371/journal.pcbi.1003137 

 


