
NEUROSYSTEMS

Context-dependent coding and gain control in the auditory
system of crickets

Jan Clemens,1,2,3 Florian Rau,1 R. Matthias Hennig1 and K. Jannis Hildebrandt4,5
1Behavioral Physiology Group, Department of Biology, Humboldt-Universit€at zu Berlin, Berlin, Germany
2Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
3Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
4Cluster of Excellence ‘Hearing4all’, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany
5Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany

Keywords: adaptive coding, auditory coding, cricket, gain control, inhibition

Abstract

Sensory systems process stimuli that greatly vary in intensity and complexity. To maintain efficient information transmission, neu-
ral systems need to adjust their properties to these different sensory contexts, yielding adaptive or stimulus-dependent codes.
Here, we demonstrated adaptive spectrotemporal tuning in a small neural network, i.e. the peripheral auditory system of the
cricket. We found that tuning of cricket auditory neurons was sharper for complex multi-band than for simple single-band stimuli.
Information theoretical considerations revealed that this sharpening improved information transmission by separating the neural
representations of individual stimulus components. A network model inspired by the structure of the cricket auditory system sug-
gested two putative mechanisms underlying this adaptive tuning: a saturating peripheral nonlinearity could change the spectral
tuning, whereas broad feed-forward inhibition was able to reproduce the observed adaptive sharpening of temporal tuning. Our
study revealed a surprisingly dynamic code usually found in more complex nervous systems and suggested that stimulus-depen-
dent codes could be implemented using common neural computations.

Introduction

One of the most challenging tasks for sensory systems is to identify
signals from separate sources in complex, natural environments. If
neuronal filters are too wide, coding is unselective and multiple
co-occurring signals can mask and distort important information
(Narayan et al., 2007). However, integration with wide filters can
enhance sensitivity for weak signals or help to reduce noise (Pouget
et al., 1999; Zhang & Sejnowski, 1999).
Thus, from the perspective of sensory coding, there is a trade-off

between the integration of information across the whole bandwidth of a
given signal and more selective coding of dominant elements to reduce
potential interference (Seri�es et al., 2004). Ideally, the balance between
separation and integration should be adjusted to the current sensory
environment in order to make efficient use of available information.
The trade-off between selectivity and sensitivity is often solved by
adapting neuronal tuning to the stimulus statistics and yields context-
dependent and stimulus-dependent codes (Vinje & Gallant, 2000;
Machens et al., 2004; Borst et al., 2005; Chacron et al., 2005; Ahrens
et al., 2008; Schneider & Woolley, 2011; Massot et al., 2012).
Context-dependent codes thus optimise coding by either exploitation of
valuable context information in nonlinear combinatorial codes [e.g.

responses to bird’s own song (Margoliash & Konishi, 1985)] or sup-
pression of background noise (Sobel & Tank, 1994). The main mecha-
nisms underlying the emergence of these adaptive codes are inhibition
and peripheral nonlinearities (Carandini & Heeger, 2012).
Although context-dependent coding has been studied in complex

neural systems, we investigate here whether a small model system
with only three major cell types and well-defined tasks (the peripheral
auditory system of the cricket) exhibits equally complex codes. Crick-
ets encode and process sound in two behaviorally relevant frequency
channels (Nolen & Hoy, 1984; Pollack & Imaizumi, 1999). Low car-
rier frequencies are associated with mating signals and elicit approach-
ing behavior; high carrier frequencies induce avoidance behavior as
they are associated with the echolocation signals of cricket-hunting
bats (Wyttenbach et al., 1996; Marsat & Pollack, 2006). Sound is
encoded by three main interneurons of the prothoracic ganglion (Pol-
lack & Imaizumi, 1999): ascending neuron (AN)1, AN2, and the
omega neuron 1 (ON1). All three of these neurons receive direct
receptor input (Hennig, 1988; Pollack, 1994). Whereas ON1 is tuned
to a broad range of carrier frequencies, the ANs separate information
about low-frequency, conspecific stimuli (AN1) and high-frequency,
‘predator’ signals (AN2) (Nolen & Hoy, 1984). Despite this separation
of the two frequency ranges in AN1 and AN2, there are several
sources of potential cross-talk between channels in receptor neurons
(Pollack & Imaizumi, 1999; Hennig et al., 2004) and synaptic integra-
tion in downstream neurons (Pollack, 1994).
Using recordings from these three cell types, we demonstrate

context-dependent coding in the cricket. Linear–nonlinear (LN)
models show that spectrotemporal tuning in AN1 and AN2 sharpens
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adaptively when switching from simple to more complex, multi-
band stimuli. Information theory demonstrates that this adaptive
code reduces interference in the coding of predator and mating sig-
nals. Using a model, we propose that this complex code can be
implemented in a static network with two mechanisms found in
many sensory pathways, i.e. a saturating input nonlinearity in the
periphery and broadly-tuned, feed-forward inhibition.

Materials and methods

Electrophysiology

Animals

Adult female Gryllus bimaculatus were obtained from a commercial
supplier and kept isolated from males. After visually inspecting the
intactness of the tympana, the mid and hind legs as well as the
wings were removed and the animal was dorsally fixed to the
recording stage with wax. The front legs were mounted in a natural
position and care was taken not to restrain the tympana with wax.
In order to reduce upstream neuronal activity and body movements,
both the mesothoracic and metathoracic ganglion were removed.
The maxillae, labrum and gut were also removed.

Recordings

Signals from AN1 and AN2 were recorded differentially from one
of the connectives between the prothoracic and subesophageal
ganglion using tungsten hook electrodes, referenced to a silver
wire in the animal’s abdomen (Hennig, 1988). Signals from ON1
were recorded in separate sessions from the prothoracic ganglion
using an extracellular tungsten electrode (World Precision Instru-
ments, Sarasota, FL, USA), referenced to a stabilising metal
spoon.
Voltage signals were band-pass filtered between 300 and

3000 Hz (DPA-2FX; npi electronics, Tamm, Germany), digitised
at 20 kHz sampling rate (PCI-6229; National Instruments, Austin,
TX, USA) and recorded using LabView software (National Instru-
ments).
After digital-to-analog conversion, audio stimuli were adjusted to

the desired sound pressure level (SPL) with an attenuator (ATN-
01M; npi electronics), amplified with a power amplifier (Raveland
XA-600; Blaupunkt, Hildesheim, Germany) and presented via one
of two loudspeakers mounted on either side of the animal. The
sound intensity was calibrated to decibels re 2 lPa with a ½-inch
condenser microphone (Type 4133, Br€uel & Kjær).

Spike sorting

Action potentials were detected by a threshold in the differentiated
voltage traces. If the signal-to-noise ratio of the recording allowed
it, both ANs were detected in the same voltage trace and sorted by
the amplitude of their spikes as AN1 had smaller amplitude spikes
than AN2 (Hennig, 1988) (Fig. 1b). Note that spikes of AN2 could
potentially mask those of AN1, which would be most detrimental
for high frequencies at which AN2 fires most strongly. However,
AN1 exhibits a higher latency than AN2 (Hennig, 1988), reducing
the probability of missing AN1 spikes coincident with those in
AN2. We ensured the identity of the recorded cells by their physio-
logical characteristics (frequency tuning, maximal firing rates, sensi-
tivity to contralateral input). Our data set consisted of five
specimens of ON1, six AN1 and 14 AN2.

The neuronal responses were relatively similar across individuals,
consistent with previous reports on response stereotypy in these cells
(Hennig, 1988). This is corroborated by the small error bars in most
figures.

Stimuli

The stimuli consisted of pure tones with a frequency of 4.5, 10, 15, or
25 kHz. The amplitude of the pure tone carriers was randomly modu-
lated by Gaussian low-pass noise with a cut-off of 200 Hz, a mean
l = 80 dB SPL and a SD r = 6 dB SPL. These four tones span the
range of behaviorally relevant carrier frequencies: 4.5 kHz corre-
sponds to the carrier frequency of the male calling song and can elicit
approaching behavior; 15 and 25 kHz are associated with the echolo-
cation signals of bats and elicit escape behavior (Popov & Shuvalov,
1977); and 10 kHz is intermediate between these two frequency
ranges and is the dominant frequency in male courtship song (Libersat
et al., 1994). The mean and SD were chosen as they fall within the
range of naturally occurring intensities and as natural stimuli with
these values elicit behavioral responses (Marsat & Pollack, 2006).
The envelope at carrier frequency f is constructed to be Gaussian

on a logarithmic decibel scale

edBf ðtÞ ¼ l þ rNf ðtÞ

where Nf(t) is zero-mean, unit-variance Gaussian noise. The envel-
ope was exponentiated to a linear voltage signal

epf ðtÞ ¼ 10ðlþ rNf ðtÞÞ=20

and multiplied by a sinusoidal carrier cf(t) of frequency f. These car-
rier frequencies were represented either individually (‘single-band’)
or as a sum (‘multi-band’)

sðtÞ ¼
X
f

cf ðtÞepf ðtÞ

Note that, in the multi-band case, the amplitude of each one of the
four carriers was modulated with independent noise; different frequency
bands thus had uncorrelated amplitude modulation (AM) patterns.
To estimate the LN models, we presented 20 different stimuli,

each of which lasted 20 s. The time-varying firing rate for evaluat-
ing the models and computing information was estimated from 20–
40 repetitions of the same 4 s stimulus. As all three neurons
adapted, we used only the stationary part of the response, by omit-
ting the first 0.4 s of each spike train.

Estimation of linear–nonlinear models

We estimated LN models from the responses to the amplitude-mod-
ulated stimuli. Such models consist of two elements: a linear filter
that describes a cell’s selectivity for (spectro)temporal features of
the stimulus and an input–output function (nonlinearity) that relates
the filter’s output to the cell’s firing rate and depicts the tuning of
the cell for the filter (Clemens et al., 2012).
Filters were estimated as spike-triggered averages. To that end,

the AM in each single band was down-sampled to 1000 Hz and the
average envelope in the 64 ms preceding a spike was calculated.
Doing this for all four carrier frequencies yielded a set of four fil-
ters. For the multi-band stimulus, consisting of four independently
amplitude-modulated frequency bands, the spike-triggered average
was calculated for each carrier frequency separately, yielding

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 42, 2390–2406

Context-dependent auditory coding 2391



another set of four filters. This corresponds to a low-resolution spec-
trotemporal receptive field, used to analyse the joint tuning of cells
for spectral and temporal features of a stimulus (see, e.g. Aertsen &
Johannesma, 1981; Atencio et al., 2008).
Model performance was quantified with a novel stimulus not used

for the estimation of the filters and input–output functions. The
time-varying firing rate of the neuron was estimated from multiple
representations of a short noise segment. The spike trains were
binned with a resolution of 1 ms and the resulting time-varying fir-
ing rate was smoothed with a box window spanning two bins. To
predict the response, the stimulus envelope was down-sampled to
1000 Hz and fed into the LN model. A bias-corrected coefficient of
correlation between the actual and predicted response served as a
measure of model performance (Clemens et al., 2012).
The distance d between filters for single-band and multi-band

stimuli was calculated as 1 minus the dot product between normal-
ised filters for each cell type and carrier frequency:

dðf1; f2Þ ¼ 1� f T1 f2, where fi are the unit-norm filters as column
vectors and T is the transpose operator.

Encoding model and coherence information

We employed a normative approach to gain insight into how neu-
ronal systems should adapt their properties for different stimulus con-
ditions (single-band vs. multi-band input). The model encoder
received uncorrelated Gaussian input on two channels; the encoder
filtered and thresholded the stimulus in both channels, and then both
inputs were pooled to yield the output firing rate of the cell. This
resembles a simplified version of our experimental stimulus paradigm
with only two instead of four frequency bands. Filters were taken
from the experimental data for AN2 (multi-band stimulus, biphasic
filter at 4.5 kHz and low-pass filter at 25 kHz; see Fig. 4a, black fil-
ters in bottom row). We examined the impact of adaptive tuning by
calculating the information about the envelope pattern for each
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Fig. 1. Data. Coding properties in cricket auditory neurons differ between single-band and multi-band stimuli. (a) We recorded neuronal responses to stimuli
with a single carrier frequency (‘single band’, left) and to the sum of these four single-band stimuli (‘multi band’, right). Shown is the pattern of random AMs
for each frequency band. (b) Spiking responses of the three major neurons in the cricket’s early auditory system were recorded extracellularly. AN1 and AN2
were recorded simultaneously from the neck connective (left) and identified by their spike amplitude (bottom). The local neuron ON1 was recorded extracellu-
larly from the prothoracic ganglion (right). (c) Firing rate tuning for the three major neurons in the cricket’s early auditory system (ON1, AN1 and AN2).
Shown is the mean � SEM firing rate for the single-band and multi-band stimuli over specimens (red and black, respectively). Average baseline firing rate is
shown as a horizontal black line. All three cells responded well to all carrier frequencies. (d) Responses of AN2 to stimuli with different carrier-frequency com-
positions. Bottom black trace shows the AM pattern for 4.5 kHz. Colored traces depict firing rate for individual single-band stimuli [see (a), left]. Top black
trace indicates response to the sum of the four single-band stimuli [see (a), right]. Green circles indicate firing events for the multi-band stimulus that were also
present in the single-band stimuli. Pink shading indicates firing events in the multi-band stimuli not associated with a firing event in any single-band response.
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individual input for different filter shapes and filter magnitudes. As
the input–output function was fixed with a slope of 1 Hz/dB, reduc-
ing the filter’s scale is equivalent to reducing the cell’s output gain.
Coherence information estimates the information retrievable

from the neuronal response by optimal linear stimulus reconstruction
and yields a lower bound on the mutual information between
stimulus and response (Borst & Theunissen, 1999). It is given by
I(f) = �log2 (1�Csr(f)). Stimulus–response coherence is defined as
Csr(f) = |Psr(f)|

2/Pss(f)/Prr(f), where Psr is the cross-spectral density
of the stimulus envelope s and the response r, and Pss and Prr are
the respective autospectral densities. The total information was
obtained by integrating I(f) between 0 and 200 Hz and summing the
information for both inputs. The calculation of information in the
cell’s experimental responses was based on the time-varying firing
rates used for model evaluation.
Note that the information rates obtained in this study differ from

those observed from homologous neurons in another species of
crickets (Marsat & Pollack, 2004, 2005), probably due to cross-spe-
cies differences. We focus on changes of information with stimulus
type and not on the absolute amount of information transmitted by
the system.

Network model

We built a minimal network model inspired by the auditory system
of the cricket to examine how stimulus-dependent coding can be
implemented. Our minimal circuit consisted of two receptor popula-
tions (low-frequency and high-frequency), the inhibitory interneuron
ON1, and AN1 and AN2. The stimulus envelope was provided by
four input channels corresponding to the four carrier frequencies
(Fig. 6a). Frequency tuning of the receptor populations was modeled
by frequency-specific attenuation (Fig. 6b): input to low-frequency
receptors was attenuated most strongly at 15 and 25 kHz (attenua-
tion values: 4.5 kHz, 0 dB; 10 kHz, �8 dB; 15 and 25 kHz,
�16 dB); and effective input to high-frequency receptors was weak-
est at 4.5 kHz (attenuation values: 4.5 kHz, �16 dB; 10 kHz,
�8 dB; 15 and 25 kHz, 0 dB) (Imaizumi & Pollack, 1999). This
was implemented as a gain factor wf, with which each carrier fre-
quency was multiplied on the pressure scale (Gollisch et al., 2002).
To pool different spectral inputs, we summed the gain-weighted
envelope of each carrier frequency on the pressure scale. We then
transformed this pooled input to the decibel scale (Fig. 6c). The
receptors’ firing rate was taken to be linearly proportional to this

pooled decibel input: rðtÞ / log10
P

f wf e
p
f ðtÞ

� �
. For single-band

stimuli this reduces to rðtÞ / log10 epf ðtÞ
� �

þ log10 wf
� � ¼ 20edf ðtÞ

� af . In this case, the multiplicative gain on the pressure scale is
subtractive on the decibel scale and therefore does not change the
variance or receptor response. To match the time scale of response
in the model with those seen in the experimental data, we applied a
low-pass filter to each driving receptor response (Gaussian with a
SD of 7 ms).
The synapses were modeled with a weight wij and a delay dij.

The time-varying firing rate of each of the three neurons in the net-
work was thus the weighted and delayed sum of its inputs (Fig. 6d):
riðtÞ ¼ P

j wijrjðt � dijÞ (inputs j: low-frequency and high-frequency
receptors, ON1; outputs i: ON1, AN1, AN2). A list of parameters
(synaptic weights wij and delays @ij) can be found in Table 1.
We employed a threshold linear input–output function (threshold

0 Hz, slope 1) to ensure strictly positive firing rates. Note that
adding this nonlinearity did not change the properties of the network
as the modeled firing rates were rarely below zero.

To analyse the encoding properties of the cells in the model, we
employed the same framework of LN models as in the analysis of
the experimental data.
If possible, network parameters were taken or estimated from the

literature (see references below). As no data were available for some
parameters (synaptic weights, some synaptic delays), these parame-
ters were chosen based on general biophysical assumptions. Note
that none of the results of this study critically depend on absolute
values of the model parameters. Rather, the coding properties of the
network are mainly determined by the network structure and the rel-
ative weights and delays between different inputs.

Receptors

The population responses of low-frequency and high-frequency
receptors are approximately linear within the dynamic range consid-
ered here (Imaizumi & Pollack, 2001; Ziehm, 2014). Consistent
with a subtractive effect of the carrier frequency tuning on their
intensity tuning, the tuning curves of individual receptors shift with
carrier frequency, whereas the slope changes relatively little (Imai-
zumi & Pollack, 2001; Gollisch et al., 2002). Intensity tuning broad-
ens at 80 dB (Imaizumi & Pollack, 1999), justifying the choice of a
relatively weak tuning of the receptor population.

Omega neuron 1

The ON1 receives input from low-frequency and high-frequency
receptors (Hirtz & Wiese, 1997). Inputs from low-frequency receptors
are slower than those from high-frequency receptors (Pollack, 1994;
Faulkes & Pollack, 2000; Marsat & Pollack, 2004). This is consistent
with the filters for 25 kHz peaking at approximately 4 ms earlier than
those for 4.5 kHz (Fig. 4c). We made two simplifications regarding
the action of ON1 in the network, neither of which affects our main
conclusions. First, ON1 provides contralateral inhibition. For our
monaural stimulation model, this would simply result in an attenuation
of the inputs to ON1, which can easily be compensated for by increas-
ing the synaptic weight of the inputs. Second, ON1 is inhibited by its
contralateral mirror neuron. This inhibition appears to have little effect
on the temporal pattern of ON1 responses and hence on its action on
the two ANs (Marsat & Pollack, 2005). Data on ON1’s timing of inhi-
bition onto both ANs do not exist and to some extent depend on the
intensity and location of sounds (Marsat & Pollack, 2005). However,
for the stimulus conditions used in our experiments, it is reasonable to
assume static synaptic delays.

Ascending neuron 1

The AN1 receives excitatory input from low-frequency receptors
only (Hennig, 1988; Hirtz & Wiese, 1997) and inhibitory input from
ON1 (Horseman & Huber, 1994; Faulkes & Pollack, 2001).

Table 1. List of parameters for the network model

Synapse Synaptic delay [ms] Synaptic weight

LF to ON1 10 0.4
HF to ON1 6 0.4
LF to AN1 12 0.3
LF to AN2 12 0.1
HF to AN2 10 0.6
ON1 to AN1 6 �0.15
ON1 to AN2 5 �0.35

LF, low-frequency receptors; HF, high-frequency receptors.
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Ascending neuron 2

The AN2 receives inhibitory inputs from ON1 (Selverston et al.,
1985) and excitatory input from low-frequency and high-frequency
receptors (Hennig, 1988; Hirtz & Wiese, 1997). Low-frequency
inputs are much weaker than high-frequency inputs in driving AN2
(Hennig, 1988). Input from low-frequency receptors is slower than
that from high-frequency receptors (Nolen & Hoy, 1987).

Cochlear model

We used a cochlear filter bank model from Zilany et al. (2009) to
simulate a single fiber in the auditory nerve of the cat with a charac-
teristic frequency of 2 kHz. In order to compare tuning at different
SPLs with isolated tones, the model was probed with tones at differ-
ent SPLs and the responses were normalised to the maximal
response at each level. To estimate tuning from spectrotemporal
receptive fields (Aertsen & Johannesma, 1981), the same model was
stimulated with sparse dynamic random chords, played back at the
same levels as the pure tones. For a detailed description of the
stimuli and parameters see Linden et al. (2003). The density for all
stimuli was 0.4 tones per octave. Tuning was extracted by fitting a
spectrotemporal receptive field, collapsing it onto the frequency axis
and normalising to maximal response.

Statistics

Data analysis and modeling were performed with custom-written
routines in Matlab. Results are reported as mean � SEM over speci-
mens. We used a Kruskal–Wallis test with a Tukey–Kramer posthoc
test (Matlab’s multcompare) for multiple comparisons (across carrier
frequencies), and we used a sign test for pair-wise comparisons (sin-
gle-band vs. multi-band stimuli).

Results

Nonlinear summation of sound frequencies

To demonstrate the context-dependent integration of carrier-fre-
quency channels in the cricket, we compared neuronal responses to
stimuli with single and multiple carrier frequencies (‘single-band’ vs.
‘multi-band’ stimuli, Fig. 1a). We chose 4.5, 10, 15, and 25 kHz as
carrier frequencies. This set of frequencies includes the whole range
of ecologically relevant sounds: attractive, conspecific calling song
(4.5 kHz) (Popov & Shuvalov, 1977), conspecific courtship song (10
and 15 kHz) (Libersat et al., 1994), and aversive bat echolocation
calls (25 kHz) (Marsat & Pollack, 2004). The AM of these single-
band stimuli was random with a mean of 80 dB and a SD of 6 dB,
resembling the stimulus statistics naturally encountered by crickets in
the field (Marsat & Pollack, 2005). The two ANs were recorded using
extracellular hook electrodes from the connective between the protho-
racic and subesophageal ganglion (Fig. 1b) (Hennig, 1988). The local
omega neuron ON1 was recorded using tungsten wire electrodes in
the prothoracic ganglion (Marsat & Pollack, 2004) (Fig. 1b).
In a first step, we compared the mean firing rates in response to

single-band stimuli with those measured when presenting the four
carrier frequencies simultaneously (multi-band). If neurons summed
the carrier frequencies linearly and did not perform context-depen-
dent integration, the multi-band firing rates would equal the sum
over frequencies of the single-band firing rates. All neurons
responded consistently when stimulated with any of the four carrier
frequencies at a mean intensity of 80 dB (Fig. 1c), indicating that

all three neurons are sensitive to a broad frequency range at that
intensity. Surprisingly, simultaneous presentation of all four carrier
frequencies did not evoke higher firing rates than the presentation of
the most effective carrier frequency alone, even though the multi-
band stimulus exhibited much more stimulus energy. This observa-
tion indicates nonlinear integration across carrier frequencies in the
cricket’s auditory system.
Having examined the mean firing rates, we next looked at the

temporal structure of spiking responses to the AM pattern in our
stimuli. Responses of an AN2 to single-band and multi-band stimuli
are shown in Fig. 1d. Although this cell type is mostly associated
with high-frequency sound, the response of the cell is strongly mod-
ulated by the AM at all tested carrier frequencies (Fig. 1d). This is
consistent with the mean firing rates exhibiting broad spectral tuning
(Fig. 1c). Interestingly, when we stimulated AN2 with the multi-
band stimulus, the response pattern often resembled the response to
15 and 25 kHz single-band stimuli, but rarely the response to low-
frequency stimuli (Fig. 1d, green circles). In addition, some firing
events that occurred upon stimulation with multi-band stimuli could
not be correlated with any firing events found in the single-band
responses, whereas some response peaks found in single-band
responses did not appear in the multi-band response (Fig. 1d, purple
bars). The latter occurred for almost all response peaks to single-
band stimuli at 4.5 and 10 kHz, and less so at 15 and 25 kHz.
This further demonstrates the nonlinear integration of stimulus

pattern across carrier frequencies and suggests that responses of
AN2 to multi-band stimuli were mainly restricted to high carrier fre-
quencies. Similar nonlinear integration across frequencies can be
observed for the other two cell types in the network (AN1 and
ON1; see Fig. 1c). However, as they exhibit less sparse responses
(less clearly isolated firing events), these effects are less evident in
the response pattern of these cells.
Having demonstrated the nonlinear and context-dependent integra-

tion of carrier frequencies in the cricket auditory system, we sought
to (i) characterise spectrotemporal tuning in the cricket quantita-
tively, (ii) provide evidence for a role of context-dependent tuning
in information transmission and (iii) propose putative mechanisms
that may underlie this code.

Using spectrotemporal receptive fields to quantify
spectrotemporal response properties

To thoroughly quantify the changes in spectrotemporal tuning with
stimulus bandwidth suggested by firing rate tuning and firing pat-
terns (Fig. 1c and d), we estimated from the responses a form of
LN model known as spectrotemporal receptive fields (Fig. 2) (Aert-
sen & Johannesma, 1981).
Generally, LN models consist of a linear filter (Fig. 2b) and a sta-

tic input–output function (nonlinearity, Fig. 2c) (Schwartz et al.,
2006). The filter describes neuronal selectivity for temporal stimulus
features, whereas the nonlinearity converts the filtered stimulus to
the neuronal firing rate. Spectrotemporal receptive fields are an
extension of the standard LN model, in which each stimulus fre-
quency band is allowed to have its own filter, i.e. the AM pattern
(envelope) at each carrier frequency is filtered by an independent
filter (Fig. 2a and b). The filtered envelopes are pooled and trans-
formed by the nonlinearity to the cell’s firing rate (Fig. 2d). The fil-
ter shape for each carrier frequency describes the carrier-frequency-
specific selectivity for temporal envelope features, i.e. the temporal
tuning. The filter magnitude or gain corresponds to the contribution
of each carrier frequency to the firing rate and thus describes the
spectral tuning.
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We fitted LN models for single-band and multi-band stimuli and
found that the models reproduced the response of all three cell types
well (Fig. 2e). As the nonlinearity changed little across stimulus
types in our data set, we restricted our analysis to the stimulus-de-
pendence of the filters (Fig. 2f).

Adaptive changes of spectral tuning in the cricket

We first quantified stimulus-dependent spectral tuning by examining
the filter gains. When probed with single-band stimuli, the filters of
all three neurons in the network exhibit high gain at all carrier fre-
quencies (Fig. 3a and b, red). This broad spectral tuning for single-
band stimuli is consistent with the broad firing rate tuning (Fig. 1c).
For multi-band stimuli, the filter gain at each carrier frequency

was reduced in all cells (Fig. 3b, black). This overall gain suppres-
sion reflects nonlinear integration across carrier frequencies as indi-
cated by the firing rate tuning (Fig. 1c), as multi-band stimuli elicit
a much smaller increase than expected from linear combination
of the responses to single-band stimuli. Instead of explaining the
firing rate tuning to multi-band stimuli by an overall reduction of
a common gain, the LN models allowed us to quantify gain in a

spectrally-resolved manner (Fig. 3b). For ON1, the reduction in gain
was relatively uniform but strongest at 25 kHz; the spectral tuning
of ON1 thus changed only little with stimulus bandwidth.
By contrast, spectral tuning drastically changed with stimulus

bandwidth for both ANs, leading to a sharpening of tuning for
multi-band stimuli in these cells (Fig. 3a, middle and right col-
umns).
In AN1, the gain for 4.5 kHz did not change and the gain for 10,

15 and 25 kHz was strongly reduced (Fig. 3b, middle column).
Spectral selectivity thus strongly increased for multi-band stimuli;
AN1 became highly selective for calling song signals and disre-
garded temporal features at higher carrier frequencies.
The changes in spectral tuning of AN1 were complementary in

AN2; a strong reduction of gain at 4.5 kHz and relatively small
changes at the higher carrier frequencies led to this cell becoming
tuned to high frequencies for multi-band stimuli (Fig. 3b, right col-
umn).
Thus, spectral tuning of all cells in the network was broad for sin-

gle-band stimuli; selective gain reduction at complementary carrier
frequencies sharpened tuning for multi-band stimuli in AN1 and
AN2.
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Temporal tuning is decorrelated adaptively

After comparing the spectral tuning by means of the filter gain at
different carrier frequencies, we next investigated the role of tempo-
ral tuning in mediating adaptive coding. To this end, we compared
the filter shapes of auditory neurons in response to single-band or
multi-band stimuli (Fig. 4).
For single-band stimuli, filters for all cell types exhibited a domi-

nant positive peak and only a weak negative lobe (Fig. 4a, red).
Thus, all cells were mainly low-pass filters of the envelope at each
carrier frequency (spectral transfer function exemplified for AN2 in
Fig. 4d, red trace).
The temporal selectivity of ON1 changed only little for multi-

band stimuli (Fig. 4a, top row; Fig. 4b, left). The greatest difference
was in the timing of the filter peak for 4.5 kHz, which was further
delayed relative to 25 kHz (Fig. 4c) (cf. Marsat & Pollack, 2004).
In contrast to ON1, the filter shape for the two ANs changed

drastically. As in our observation for the spectral tuning, these
changes affected the low-frequency and high-frequency bands in
AN1 and AN2 in a complementary manner (Fig. 4a, middle and
bottom rows, compare Fig. 3b).
For AN1, the filter for 4.5 kHz was unaltered. However, the filter for

10 kHz revealed a weak reduction in amplitude and the filters at 15 and
25 kHz lacked any clear structure (Fig. 4a, middle row; Fig. 4b, mid-
dle). Some specimens of AN1 (2/6) even lacked a well-structured filter
for single-band stimuli at 15 and 25 kHz, probably because of a sharper
tuning or less sensitive low-frequency receptors (not shown).
For AN2 and multi-band stimuli, the filters at high carrier frequen-

cies remained largely unimodal, whereas the filter for 4.5 kHz
acquired a bimodal shape (Fig. 4a, bottom row; Fig. 4b, right). This
entailed a striking transformation of the coding properties from a low-
pass to a band-pass filter (Fig. 4d). The non-normalised filter sug-
gested that this transformation was mainly through a reduction of the
positive lobe (‘excitation’), not an increase in the magnitude of the
negative lobe (‘inhibition’) (Fig. 3a, right). In some recordings of
AN2 (4/12), the filter at 4.5 kHz became strictly negatively lobed.
Thus, our experiments demonstrate adaptive and complementary

sharpening of tuning in the output neurons of the cricket’s periph-

eral auditory system (Figs 3 and 4): spectral tuning of AN1 became
more selective for 4.5 kHz, whereas the temporal tuning changed
only little with stimulus condition. In AN2, the tuning for carrier
frequency became more high-pass; the temporal filter for the envel-
ope at 4.5 kHz changed from a unimodal to a bimodal shape,
whereas those for high carrier frequencies did not change.
Given the small numerical size of the cricket auditory system, we

were surprised by such profound changes in coding properties. Hav-
ing thoroughly quantified context-dependent spectrotemporal tuning
using spectrotemporal receptive fields, we aimed to (i) provide evi-
dence that context-dependent coding improves information transmis-
sion and (ii) propose putative mechanisms that could underlie
nonlinear coding in neural networks.

Adaptive spectrotemporal tuning preserves information

The changes in spectrotemporal tuning with stimulus condition
mainly involved a gain reduction for some input frequencies (AN1
and AN2; Fig. 3) or a reduction in the bandwidth of the filter from
low-pass to band-pass (AN2; Fig. 4). Although this sharpening of
tuning increases specificity, it also entails a loss of information;
broad tuning has the potential to encode all inputs, whereas a carrier
frequency subject to gain reduction will not be encoded anymore.
To explore whether sharpening of tuning is detrimental to informa-
tion transmission or whether it has a beneficial role, we used an
optimal linear decoder and investigated how much information about
each carrier frequency can be recovered from the neuronal response.
We started by exploring the problem of coding multiple inputs in a
setting where we have perfect control over the changes in coding
properties; using a simple, normative model we demonstrate how a
neuronal system should change its coding properties to optimise
information transmission (Massot et al., 2012; Middleton et al.,
2012). We then used our experimental data to test the predicted
effects in information transmission.
The normative model investigates the trade-off that the cricket

auditory network faces in a generalised framework; like AN2, the
model receives input on two carrier-frequency channels and encodes
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information about the AM pattern of the individual inputs. Each
input is filtered and thresholded. The model output is obtained by
pooling the response to each input channel (Fig. 5a). We then
searched for filter shapes and gains that maximise information trans-
mission.
For a single-band input, the model transmits 110 bits/s of infor-

mation (Fig. 5b). Interestingly, this baseline value is reduced to 80
bits/s when the model encodes two inputs simultaneously (Fig. 5c),
i.e. not only is the information about each individual input reduced
but also total information is lost. This is caused by ambiguity; given
only the pooled response, it is not clear which part of the response
corresponds to which of the two inputs, as the response components
lack a label marking them as coming from either input (Clemens
et al., 2011). Even worse, for reconstructing one of the two inputs,
the response elicited by the other input constitutes noise, leading to
a further loss of total information.
If we reduce the gain of one of the inputs as seen in AN1 and

AN2 (Fig. 3b), information about the suppressed input is nearly lost
(3 vs. 40 bits/s, Fig. 5d). However, this loss of information about
one of the inputs leads to an increase of information about the other
input (40 vs. 101 bits/s) and also in terms of total information (104
vs. 110 bits/s). Thus, the gain reduction in AN1 and AN2 focuses
coding to specific inputs and improves overall information transmis-
sion.
Changing the bandwidth of the filters for one of the inputs is a

second way to implement contextual coding (Fig. 5e). Here, the

transformation of the filter transfer function (low-pass to band-pass
as in AN2; Fig. 4a, lower left) entails a reduction of information
about low AM frequencies. Now only the low AM frequencies of
input 1 and the high AM frequencies of input 2 are encoded
(Fig. 5e, middle row). Thus, reducing the similarity of both filters as
in AN2 leads to a preservation of total information.
The normative model illustrates that, instead of leading to an

overall information loss, the sharpening of tuning in AN1 and AN2
can preserve information by reducing the overlap between the repre-
sentations of concurrent inputs. In the case of gain suppression, this
is accomplished by tuning out one of the inputs. In the case of the
filter shapes, it is achieved by encoding complementary aspects of
the inputs. Hence, the changes in filter shapes (Fig. 4) and gain
(Fig. 3) observed in the cricket auditory system could help to
preserve information when multiple inputs are present.
To directly demonstrate that the adaptive changes in coding

improve information transmission, we estimated information from
our experimental data. Using an optimal linear decoder (see Materi-
als and methods) we compared the information about the AM pat-
tern at each carrier frequency for single-band and multi-band
stimuli.
In ON1, we observed a loss of information in the multi-band

condition across all frequencies (Fig. 5f and g). This is consistent
with the predictions of the normative model (Fig. 5c), as ON1’s
spectrotemporal tuning did not adapt, i.e. it was broad for single-
band and multi-band stimuli (Fig. 3c). Hence interference and
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ambiguity between all carrier frequencies was strong and informa-
tion was lost.
By contrast, information was preserved in AN1 for 4.5 kHz and

information was lost only at higher carrier frequencies (Fig. 5f and
g). This is consistent with the effect of strong gain suppression for
higher frequencies (Fig. 3b) predicted by the normative model
(Fig. 5d). Thus, nonlinear integration of inputs in AN1 selectively
preserved information about conspecific communication signals.
In AN2, information about AM was partly lost for all carrier fre-

quencies when presented simultaneously (Fig. 5f and g, right). How-
ever, when we compared how much information was degraded by
the presence of other frequency bands, we found differences
between low and high frequencies. In AN2, 93% of the information
about 4.5 kHz was lost during multi-band stimulation, whereas for
25 kHz, information was reduced by only 64% (Fig. 5f and g,
right). Thus, nonlinear coding in AN2 [gain suppression and
changes in filter shape (Figs 3b and 4b)] reduced information loss
about the AM pattern of high frequencies in a multi-band stimulus,
in agreement with its role for high-frequency predator signal coding.
Information theory thus provided a functional explanation for the

changes in spectrotemporal coding. The interference among carrier
frequencies due to the broad tuning of single neurons in the single-
band condition was avoided by the selective preservation of infor-
mation about either conspecific (AN1) or predator (AN2) signals in
the multi-band condition.

A network model suggests mechanisms underlying adaptive
spectrotemporal coding

Our analysis revealed two types of adaptation that both preserve
information transmission for multi-band stimuli (Fig. 5): selective
reduction of gain and changes in filter shape (Figs 3 and 4). Similar
context-dependent codes have been described in much more

complex sensory systems (e.g. Gour�evitch et al., 2009). Interest-
ingly, the well-characterised cricket auditory pathway constitutes a
minimal instantiation of a common network motif (broadly-tuned
feed-forward inhibition) as ON1 pools information from both
receptor populations and inhibits both ANs (Wohlers & Huber,
1982; Selverston et al., 1985; Horseman & Huber, 1994).
To formulate testable hypotheses about the mechanisms underly-

ing adaptive spectrotemporal coding, we built a network model
inspired by the structure of the cricket auditory system. Our minimal
circuit model of the auditory system of crickets included two recep-
tor populations (low-frequency and high-frequency), the inhibitory
local neuron ON1, and AN1 and AN2 (Fig. 6). The neurons were
linear rate units and the synapses were linear with a weight and a
delay. Model parameters were taken from the literature if available
(see Materials and methods for details). For some of the parameters,
we made biophysically reasonable assumptions to ensure that the
model reproduced the data (Table 1). Our data set describing the
spectral and temporal tuning of the three major neurons in the net-
work for different stimulus conditions constituted a powerful con-
straint for model parameters. Moreover, we ensured that the results
did not depend on the specific parameter values.

The source of the adaptive spectral tuning in the model is a
logarithmic input nonlinearity

In our experimental data, we observed stimulus-dependent spectral
tuning, mediated by a suppression of gain for nonpreferred frequen-
cies (Fig. 4). We tested our network model with the same single-
band and multi-band stimuli and repeated the LN model analysis
with the result of the model simulation by looking at changes in
filter shape and gain with stimulus bandwidth. Even though the net-
work model explicitly excluded adaptive mechanisms or dynamic
changes in its parameters, it achieved the adaptive firing-rate tuning
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(Fig. 7c, compare Fig. 1c) and the adaptive spectrotemporal tuning
qualitatively similar to the experimental observations (Fig. 7a and b,
compare Fig. 3a and b). As the model reproduced our experimental
data, we were able to explore the mechanisms behind context-depen-
dent adaptation in the network model by selectively changing
individual components.
The most obvious candidate mechanism for adaptive coding is the

inhibition mediated by ON1, as this neuron receives input from both
receptor populations and thereby constitutes a global gain-control
pool (Wohlers & Huber, 1982; Pollack, 1994). Surprisingly, remov-
ing the inhibitory inputs from ON1 to both AN1 and AN2 had little
effect on the shape of the spectral or firing rate tuning (Fig. 7b and
c, compare black and green lines).
Having ruled out ON1 as the primary origin of context-dependent

spectral tuning in the model, we concluded that the effect must arise
earlier, i.e. in the auditory receptors. Indeed, the receptors in the net-
work model already displayed the adaptive spectral tuning in AN1
and AN2; it was broad for single-band stimuli and followed their
input frequency tuning only for multi-band stimuli [shown here for
low-frequency receptors (Fig. 7d), high-frequency receptors exhibit
similar behavior].
These changes in tuning did not result from changes in network

model parameters; the parameters determining receptor tuning were
the same across stimulus conditions (Fig. 6b). Stimulus-dependent
tuning was thus an emergent property created by static nonlinearities
in the network. The main nonlinearity in the model was the transfor-
mation from the pressure to the decibel scale and replacing this log-
arithmic nonlinearity with a linear transformation did abolish
adaptive tuning; now, all carrier frequencies exhibited differential
gain according to the frequency tuning of the receptors in all stimu-
lus conditions (Fig. 7d). This adaptive effect of the pressure-to-deci-
bel transformation did not rely on a specific functional form
provided it was saturating. We observed a similar effect with power
law or exponential-like nonlinearities commonly used to fit the
input–output functions of sensory receptors in other modalities
(Fig. 7f–g). Given that saturating nonlinearities are relatively com-
mon, they could support adaptive codes in many neural systems.
To further validate the generality of the finding that a saturating

input nonlinearity enables adaptive tuning, we tested the spectral tun-
ing of a standard model of the mammalian cochlear filter bank (Zilany
et al., 2009) using single-band or multi-band stimuli. This model is
equipped with a logarithmic input nonlinearity and accordingly exhi-
bits a sharpening of tuning for multi-band stimuli (Fig. 7h, compare
red and black tuning curves). To our knowledge, such adaptive spec-
tral tuning in the cochlea has not been noted before. This suggests that
the sharpening of tuning observed in more central auditory areas in
the mammalian brain (Gour�evitch et al., 2009) could be a conse-
quence of static nonlinearities already within the cochlea.

Decorrelation of temporal tuning in the model is governed by
the strength and timing of inhibition

We next used the network model to investigate the context-depen-
dent temporal tuning AN1 and AN2 (Fig. 4). The filter changes
observed for single-band and multi-band stimuli in the neurons of
the network model corresponded well with those seen in the data
(compare Figs 8a and 4a). As in the data, these changes were lar-
gely confined to the carrier frequency that underwent the strongest
gain suppression (compare Figs 3 and 4).
Although the logarithmic nonlinearity of the receptor population

provided a mechanism for changes in spectral tuning, it could not
explain the observed filter changes. However, although inhibition

did not contribute to spectral tuning (Fig. 7b), the interplay of exci-
tation and inhibition could be the mechanism behind the adaptation
of temporal coding. Indeed, removing inhibitory inputs from ON1 to
both AN1 and AN2 abolished the observed changes in filter shape
with stimulus condition (Fig. 8b, compare Fig. 4b).
The effect of inhibition on filter shape can be directly visualised

as our network model is linear; the output filters of individual neu-
rons thus arise from simple linear summation of their input filters.
For example, the filter of AN1 is the combination of the filter of
low-frequency receptors and of ON1, each weighted and delayed by
the parameters of the associated synapse (Fig. 9b). We reasoned that
the changes in filter shapes arise from an increase in inhibitory drive
induced by multi-band stimuli. We thus quantified the excitatory or
inhibitory drive by the integral of the weighted filters with positive
and excitatory synaptic weights, respectively, and then calculated
the ratio of total inhibitory and excitatory drive (I/E ratio). Small I/E
ratios indicate weak inhibition, whereas ratios close to 1 indicate the
even strength of excitatory and inhibitory inputs.
The I/E ratio is uniform across frequencies and small in AN1 and

AN2 for single-band stimuli, indicating that excitation far outweighs
inhibition for this stimulus condition (Fig. 9a, red). By contrast, the I/E
ratio differs between carrier frequencies for the multi-band stimulus.
Most notably, at carrier frequencies whose gain is strongly suppressed
(Fig. 3b), the I/E ratio increases and approaches values of 1.0, indicat-
ing balanced excitatory and inhibitory inputs (AN1 at 15 and 25 kHz,
AN2 at 4.5 kHz, Fig. 9a). These are the same carrier frequencies at
which the filter shapes change the most; hence, the magnitude of the fil-
ter changes is largest at frequencies where the relative strength of inhi-
bition increases most strongly (compare Fig. 8b). Note that we did not
change any of the model parameters with stimulus condition. These
changes in the effective inhibitory drive thus emerge from the network
connectivity and the logarithmic input nonlinearity in receptors.
The I/E ratio thus explains the magnitude of filter shape changes at

each carrier frequency with stimulus bandwidth. However, the nature
of this change was different in each AN (Fig. 4a) despite the I/E ratio
being similarly close to 1.0 in both cases (Fig. 9a). In AN1 at 15 and
25 kHz, we observed a loss of any filter structure, whereas in AN2 at
4.5 kHz, the filter changed from unimodal to bimodal (Fig. 4a). The
timing of excitation and inhibition can explain these effects. In AN1 at
15 and 25 kHz, excitation and inhibition are coincident (Fig. 9b, left,
red and blue, respectively). As they are both approximately balanced
for multi-band stimuli (Fig. 9a), they cancel each other, leading to an
almost flat filter (Fig. 9b, right, black). By contrast, in AN2 at
4.5 kHz, excitation slightly led inhibition (Fig. 9b, red and blue). For
single-band stimuli, the inhibitory drive was too weak to strongly
affect filter shape in AN2 and hence the filter was shaped primarily by
the unimodal filters of excitatory inputs (Fig. 9c, left). However, with
inhibition being much stronger for multi-band stimuli (Fig. 9a, right),
a negative lobe emanates due to inhibition initially outweighing exci-
tation (Fig. 9c, right).
In summary, our network model suggests two putative mecha-

nisms enabling adaptive spectrotemporal tuning, i.e. a saturating
input nonlinearity can produce adaptive spectral tuning and alters
the relative strength of inhibition. This change in I/E balance then
leads to changes in temporal tuning whose specific nature depends
on the timing of inputs.

Discussion

We proposed that sensory coding should change adaptively, depend-
ing on whether a stimulus is presented alone or together with other
stimuli. For the cricket auditory system studied here, tuning should
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then change from integration across frequency channels to selective
encoding of an individual channel. Consistent with this prediction,
we found that the spectrotemporal tuning of cricket auditory neurons
narrows when challenged with broadband stimuli (Figs 3 and 4).
This adaptive tuning improves information transmission (Fig. 5) and
may be implemented by a saturating input nonlinearity and feed-for-
ward inhibition (Figs 7–9).

Decorrelated coding maximises information about individual
stimulus components by reducing interference

Information theoretical studies show that, when encoding simple
stimuli consisting only of a single component, neurons in a popula-
tion should have broad, overlapping tuning curves to exploit all
available coding capacity (Pouget et al., 1999; Zhang & Sejnowski,
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1999; Seri�es et al., 2004). By contrast, tuning should sharpen for
encoding multiple, concurrent stimuli (Fig. 5) (see also Massot
et al., 2012; Middleton et al., 2012). As stimulus conditions can
vary between these two cases, a neural system needs to rapidly
change its tuning from broad for single stimulus components to nar-
row for multi-component stimuli to maintain optimal coding. This
leads to stimulus-dependent tuning, known from many systems
[electric fish (Chacron et al., 2003), rodent auditory cortex (Ahrens
et al., 2008), primate visual cortex (Vinje & Gallant, 2000) and pri-
mate vestibular system (Massot et al., 2012)]. The adaptive spectral
and temporal tuning observed in the cricket is consistent with this
view (Figs 3 and 4). For single-band stimuli, AN1 and AN2 exhib-
ited broad and similar spectral and temporal tuning. For multi-band
stimuli, spectral sensitivity narrowed, thus restricting each AN to
encode only a subset of carrier frequencies present in the multi-band
stimulus (Fig. 3b). These subsets of carrier frequencies are defined
in terms of the behavior elicited by them, i.e. either approach to low
calling song frequencies (4.5 kHz in AN1) or avoidance of high-fre-
quency predator signals (15 and 25 kHz, AN2).
The changes in spectrotemporal tuning affected complementary

ranges of carrier frequencies in the two ANs. This decorrelated the
spectrotemporal receptive fields across both ANs and potentially
reduced stimulus-driven correlations in responses to broadband stimuli
(Figs 3 and 4). Decorrelation of receptive fields has been discussed in
the context of redundancy reducing codes (Vinje & Gallant, 2000;

Barlow, 2001). In our case, decorrelation has a different role; it leads
to different stimulus components being transmitted through separate
channels (AN1 and AN2). This reduces interference between the rep-
resentations of co-occurring signals (Fig. 5) and simplifies the neural
code as it avoids having to decompose the multiplexed representation
of different components upon readout. Moreover, this organisation of
adaptive coding at the network level (with complementary ranges of
carrier frequencies being suppressed) helps mitigate the information
loss entailed by an increase of specificity, i.e. a narrowing of tuning
(Fig. 5d and e). This suggests that information is not only maximised
in single cells but also at the population level.

Stimulus-dependent coding and gain control

The adaptive coding in the cricket is reminiscent of ‘max-like’ as
opposed to ‘average-like’ or ‘summation-like’ encoding of multiple
stimulus components (Wimmer et al., 2008). That is, both AN1 and
AN2 preferentially responded to the strongest inputs in a mixture,
rather than to the average or sum of all components (Fig. 3) [compare
Gawne & Martin (2002) with Zoccolan et al. (2005) and Carandini &
Heeger (2012)]. This seems efficient, as AN1 or AN2 should not
encode the compound envelope across all carrier frequencies, as the
temporal pattern at different carrier frequencies conveys different cate-
gorical meaning to the cricket (Wyttenbach et al., 1996). Facing a
similar problem, a motion-sensitive neuron in area middle temporal of
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the primate visual pathway should not respond to the average motion
of two divergent objects in the visual field. Max-like or winner-take-
all encoding is one outcome of the divisive normalisation observed in
more complex sensory systems like the primary visual cortex. The fact
that we find a similar computation in a much simpler system suggests
that gain control is indeed ‘canonical’ (Carandini & Heeger, 2012).
Although nonlinear, stimulus-dependent codes have been reported

in many systems, the mechanisms underlying these phenomena are
generally unclear. The mechanisms discussed include subthreshold
activation, inhibitory inputs, modulation of the spiking threshold or
the output nonlinearities (Assisi et al., 2007; Schneider & Woolley,
2011; Massot et al., 2012; Priebe & Ferster, 2012). Using a simpli-
fied model of the cricket auditory system (Fig. 6), we propose two
candidate mechanisms that could underlie stimulus-dependent cod-
ing in this system: a logarithmic input nonlinearity with the crucial
property of saturation (Fig. 7) and a broadly tuned feed-forward
inhibition (Fig. 8) (Wu et al., 2008; Poo & Isaacson, 2009; Liu
et al., 2011; Papadopoulou et al., 2011; Carandini & Heeger, 2012).

The role of inhibition for adaptive spectral tuning and temporal
selectivity

Modulation of inhibition is thought to induce adaptive and selec-
tive coding by changing the balance of excitation and inhibition

in a stimulus-dependent manner (Wehr & Zador, 2003; Assisi
et al., 2007; Poo & Isaacson, 2009). In our network model, inhi-
bition was mediated by ON1, which pooled activity of low-fre-
quency and high-frequency receptors and was therefore broadly
tuned (Fig. 3b). ON1 in the model altered the temporal selectivity
of both ANs for multi-band stimuli (Fig. 8b). ON1 is usually
associated with the enhancement of directional cues in the system
(Horseman & Huber, 1994; Marsat & Pollack, 2005) but has also
been shown to shape temporal selectivity in the cricket (Tunstall
& Pollack, 2005). The role of ON1 suggested by our network
model could be demonstrated by pharmacologically blocking its
inhibitory synapses onto both ANs (without inhibition, temporal
tuning should not change with stimulus condition) (Fig. 8b,
green).
Although broad tuning of inhibition is a prerequisite for effective

gain control (Fig. 7) (cf. Papadopoulou et al., 2011; Carandini &
Heeger, 2012), the timing of inhibition in the model controlled its
specific effect on temporal coding (Fig. 9). Interestingly, the effect
of inhibition from ON1 in the network model was similar to that
observed in the barrel cortex of rodents; for AN2 in the model, it
was coincident with nonpreferred stimuli and thereby more effective
in their suppression (Fig. 9c) (cf. Wilent & Contreras, 2005). For
AN1 in the model, it neutralised the excitation coming from nonpre-
ferred high carrier frequencies (Fig. 9b).
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A saturating nonlinearity as a peripheral transformation
supporting stimulus-dependent codes

The network model revealed another transformation yielding stimu-
lus-dependent coding, i.e. the saturating transformation in the
periphery. This static nonlinearity produced broad receptor tuning
for single-band stimuli and narrow receptor tuning for multi-band
stimuli in the network model (Fig. 7d–g). Therefore, adaptive spec-
tral tuning should be visible already in the population responses of
auditory receptors as predicted by the network model, a surprising
prediction that can be tested in future experiments.
Other studies have shown that gain control relies on accelerating

output nonlinearities, such that the effective inhibitory drive is low
for weak (single-band) stimuli and strong for strong (multi-band)
stimuli (Rubin et al., 2015). In our network model, there exist no
accelerating output nonlinearities but only saturating input nonlinear-
ities. Thus, the position of a nonlinearity (input or output) seems to
determine what shape it needs to have to support gain control.
Our model is agnostic as to the biophysical underpinnings of this

saturating nonlinearity in auditory receptors. Dendritic or firing rate
nonlinearities are likely candidates (e.g. Jones & Gabbiani, 2012).
Alternatively, nonlinearities could arise through nonlinear tympanal
dynamics underlying mechanotransduction as demonstrated in other
insect species, but not as yet for the cricket species studied here
(Windmill et al., 2005; Mhatre & Robert, 2013). Our study demon-
strates the far-reaching and beneficial consequences of such nonlin-
earities. The contribution of tympanal nonlinearities could be tested
using laser Doppler vibrometry (Mhatre & Robert, 2013).
Irrespective of its source [the nonlinearity’s effect is general and

does not depend on a specific functional form but works with any
saturating input–output relation (see Fig. 7d–g)], every system with
a compressive nonlinearity after a linear filter stage can exhibit
adaptive coding [olfaction (Olsen et al., 2010), vision/vertebrates
(Sharpee et al., 2006) and vision/insects (Jones & Gabbiani, 2012)].
For instance, the cochlea is known to exhibit a logarithmic input
nonlinearity (Zilany et al., 2009) and a standard filter-bank model
also displays adaptive tuning (Fig. 7h). A cochlear logarithmic non-
linearity thus constitutes a peripheral mechanism that potentially
contributes to the stimulus-dependent tuning observed in the primary
auditory cortex (Gour�evitch et al., 2009).

Integration of peripheral nonlinearity and inhibition in complex
neural networks

Although our simple network model was successful in reproducing
suppression and decorrelation as observed in the experimental data,
biological networks (including the cricket auditory system) are much
more complex than our model and are equipped with a wealth of
nonlinearities. How the mechanisms described here interact with a
dynamic spiking threshold, spike-frequency adaptation, presynaptic
inhibition or other sources of inhibition (Nolen & Hoy, 1987; Pol-
lack, 1988; Wimmer et al., 2008; Hildebrandt et al., 2011) requires
future attention. Dynamic changes in coding properties induced by
feed-back gain control or spike-frequency adaptation support robust
coding in the presence of a masker (e.g. background noise) (Rabi-
nowitz et al., 2013; Mesgarani et al., 2014). These dynamic mecha-
nisms are present in the cricket (Benda & Hennig, 2008) and could
further enhance the robust and adaptive code explained by our static
network model. Several studies have demonstrated that static nonlin-
earities in the periphery can contribute to nonlinear spectrotemporal
tuning in mammalian auditory nerve fibers and in subcortical parts
of the mammalian auditory system (Nelken et al., 1997; Reiss et al.,
2007). Notably, two-tone or side-band suppression yield forms of

nonlinear, stimulus-dependent tuning in the cricket and in mammalian
auditory systems (Nolen & Hoy, 1987; Delgutte, 1990). However,
most studies performed in mammalians measure response properties
near threshold or consider the sound carrier as the relevant stimulus
(and not the envelope), making a direct comparison with our results
challenging (Carney & Yin, 1988; Kim & Young, 1994; Windmill
et al., 2005; Versteegh & van der Heijden, 2013). Also, it has been
shown that bursts in AN2 support the separation of mating and preda-
tor signals (Marsat & Pollack, 2005). These and other nonlinear
changes in a coding scheme can alleviate some of the trade-offs asso-
ciated with sharpening tuning (Fig. 5) by enabling multiplexed, non-
linear encoding of two stimuli within a single spike train.
Note that the structure of the auditory system of crickets is shared

among many species of crickets. However, despite a similar network
layout, there exist considerable differences in the coding properties
across species. The cricket Teleogryllus oceanicus differs from the
species in this study (Gryllus bimaculatus) with regard to the input
latencies for ON1 and the duration of filters in ON1 as well as the abso-
lute information rates in AN1, AN2 and ON1 (Pollack, 1994; Marsat &
Pollack, 2004, 2005). These differences could be the outcome of evolu-
tionary adaptations to the different acoustic challenges faced by each
species (cf. Tunstall & Pollack, 2005), e.g. the frequency spectra of the
calling song differ between the species. It will thus be interesting to
apply our approach to other species to establish the robustness of stim-
ulus-dependent coding to variations in network parameters.
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