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Traditionally, perceptual decision making is studied in trained animals and carefully controlled tasks. Here, we sought to elucidate the
stimulus features and their combination underlying a naturalistic behavior—female decision making during acoustic courtship in
grasshoppers. Using behavioral data, we developed a model in which stimulus features were extracted by physiologically plausible
models of sensory neurons from the time-varying stimulus. This sensory evidence was integrated over the stimulus duration and
combined to predict the behavior. We show that decisions were determined by the interaction of an excitatory and a suppressive stimulus
feature. The observed increase of behavioral response with stimulus intensity was the result of an increase of the excitatory feature’s gain
that was not controlled by an equivalent increase of the suppressive feature. Differences in how these two features were combined could
explain interindividual variability. In addition, the mapping between the two stimulus features and different parameters of the song led
us to re-evaluate the cues underlying acoustic communication.

Our framework provided a rich and plausible explanation of behavior in terms of two stimulus cues that were extracted by models of
sensory neurons and combined through excitatory–inhibitory interactions. We thus were able to link single neuron’s feature selectivity
and network computations with decision making in a natural task. This data-driven approach has the potential to advance our under-
standing of decision making in other systems and can inform the search for the neural correlates of behavior.

Introduction
Decision making in biological systems involves the detection and
integration of environmental cues. In neural systems performing
a perceptual decision-making task, multiple stimulus cues are
extracted by sensory neurons, integrated over some time and
combined to inform a motor action (Gold and Shadlen, 2007;
Drugowitsch and Pouget, 2012). In this process, two timescales
are bridged: first, a short one related to the stimulus features
being detected, and second, a longer one corresponding to the
integration of evidence derived from multiple feature detectors
over the stimulus’ time course. This multiscale nature renders the
identification of the stimulus cues guiding a decision nontrivial.

On the one hand, the concept of the receptive field developed
for sensory neurons has been applied to identify the stimulus
features underlying perceptual decisions in artificial tasks (per-
ceptive fields or decision images; Victor, 2005; Neri and Levi,
2006). However, these methods rely on a simple relation between
feature and decision. They fail in more naturalistic tasks, e.g.,

when the decision is based on integration of evidence over time-
varying stimuli.

On the other hand, drift-diffusion and attractor models of
decision making well capture the dynamics and inherent trade-
offs of decision making brought about by the long timescales
involved in integrating evidence. These models have a thorough
grounding in theory and confirmation by experiment (Machens
et al., 2005; Uchida et al., 2006; Wang, 2008; Churchland et al.,
2011). Yet, they are most often applied in artificial tasks with well
controlled, often static and one-dimensional stimuli, where the
relevant stimulus cue is known beforehand.

However, decision making in natural tasks relies on stimuli
that are dynamic and high-dimensional. Here, we study percep-
tual decision making during song recognition in grasshoppers as
a model of a highly relevant, natural task performed by untrained
animals.

During courtship, female grasshoppers of the species Chor-
thippus biguttulus decide to initiate a courtship ritual based on
short temporal features of the male’s song (von Helversen and
von Helversen, 1997; Ronacher and Stange, 2013). Notably, the
female awaits the end of the male’s song before signaling its de-
cision. This behavior is thus potentially based on integration of
evidence over the duration of the song and the decisive tem-
poral features can occur any time during the song. Due to this
integration and due to the time-varying pattern of songs, a
successful model needs to appreciate both timescales: the
short one associated with the extraction of stimulus features
and the long one involved in integrating these features over the
stimulus.
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We developed a general and physiologically plausible model
of a perceptual decision-making system that we fitted to behav-
ioral data. It combined a feature extraction stage—implemented
as a bank of linear–nonlinear models—and an integration stage.
This model described the transformation from stimulus to be-
havioral output very well. In addition, it generalized to a novel
stimulus set. Its structure shows what cues guided the female’s
decision to mate, how these cues were extracted from the song,
and how they were combined to yield a perceptual decision.

Materials and Methods
Structure of the model. We sought a model that could describe the trans-
formation from the raw stimulus to the behavioral response probability
with a simple and neurophysiologically plausible structure, which can be
fitted to behavioral data and is compatible with theories of optimal deci-
sion making.

Many models conceptualize decision making based on sensory stimuli
as a two-stage process. First, momentary evidence is accumulated and
second, a decision is made based on this evidence, usually once a certain
degree of confidence is reached or when the stimulus is over. Since we
applied this framework in a natural task without knowing beforehand
which stimulus features would be important, we extended this basic
structure with a feature detection stage that extracts the evidence from a
time-varying stimulus.

Feature detection was implemented by a bank of up to three linear–non-
linear models. The stimulus s!t" was linearly filtered fj!t" ! #$%

% s!""hj!t #
""d" and subsequently transformed by a sigmoidal nonlinearity
gj!t" ! 1/!1 $ exp! # ajfj!t" $ bj"". The linear filter constituted the
temporal stimulus feature driving decisions. Linear–nonlinear models
are physiologically plausible and were successfully used to describe the
input– output function of sensory neurons in many sensory systems
(Fairhall et al., 2006; Clemens et al., 2012).

The sensory evidence provided by each feature detector was integrated
to a feature value. We implemented this step via a perfect integrator
vj ! 1/T#0

T gj!t". This was proposed by theories of optimal decision
making (Beck et al., 2008) and is backed by the finding that neurons in
cortex can act as perfect integrators (Churchland et al., 2011).

Finally, the evidence provided by each feature detector and encoded in
the feature values was linearly combined to yield a behavioral response
value (Gold and Shadlen, 2007; Haefner et al., 2013). In Bayes-optimal
decision making these weights are proportional to the reliability of each
cue (Drugowitsch and Pouget, 2012). This stage can be implemented in a
network with excitatory and inhibitory synapses (Poirazi et al., 2003).

Fitting the model. Often, perceptual decision making is studied in
trained tasks where the relevant cues are predetermined by the experi-
menter. In cases where the stimulus cues are not known beforehand,
methods related to the receptive field from neurophysiology have been
successfully applied to identify the stimulus features underlying a percep-
tual decision (Victor, 2005; Neri and Levi, 2006). These methods rely on
a tight spatial or temporal correlation between the stimulus feature and
the decision. However, the integration step in our model destroys this
temporal correlation.

We fitted the model using a genetic algorithm, a class of swarm opti-
mization methods that is inspired by biological evolution (Mitchell,
1998): A population of solutions was randomly initialized. Then, the
fitness of each individual solution was evaluated using a goodness-of-fit
measure between the predicted and the measured behavioral response.
Individual solutions were propagated to the next generation based on
their fitness. This way, the best solutions had a higher chance to survive.
Variability was introduced to each individual solution through random
mutations or recombination of existing solutions. Thereby, good solu-
tions were modified to eventually produce better solutions. This evalu-
ation–selection–mutation cycle was repeated until an optimal solution
was found.

This way, the shapes of the filters and the parameters of the nonlinear-
ity were optimized. The weights for combining different feature values
were found by linear regression to the behavioral data in the training set.
Filters fj were represented as a weighted sum of up to 16 raised-cosine

basis functions covering a duration of 64 ms (Pillow et al., 2008). This
sped up training time by reducing stimulus dimensionality and enforced
smooth filters. Filters with different durations (see Fig. 1b) were created
by varying the number of basis functions, e.g., the shortest filter (8 ms)
consisted of a single component and was therefore constrained to be
unimodal. The longest filter (64 ms) was built from 16 components. The
envelopes of the full ensemble of stimuli in each dataset were normalized
to have zero-mean and unit-variance.

Quantification of model performance. We estimated model perfor-
mance using leave-one-out cross-validation. Generally, cross-validation
estimates how well a model predicts novel data not used for fitting
(Schönfelder and Wichmann, 2012). This is achieved by dividing the
dataset into a training and a test set. In our case the model was trained on
89 of the 90 stimuli. We then calculated the model output for the stim-
ulus left out during training. We repeated this such that each stimulus
was used once for testing. Performance was quantified using Pearson’s
coefficient of correlation r2 between the experimental data and the test
prediction.

Cross-validation yielded a large set of structurally similar models. To
facilitate description of the model structure, we chose to analyze a model
trained on the full dataset. This non-cross-validated model exhibited a
performance and structure similar to that found with cross-validation:
the cross-validated model explained 87% of the variance in the data, the
model trained on the full dataset 91%. This 4% gain in performance was
evenly distributed across all stimuli, leading to a negligible 0.04% in-
crease per stimulus. Also, the filters of the models fit both ways were
highly similar—the median correlation between filters of the full-fits and
those of individual cross-validations was 0.98 and 0.87. Due to this sim-
ilarity in structure and performance, all the conclusions drawn from the
model fitted to the full dataset are valid for the cross-validated models.

Reproducibility of filter shapes across runs. Since the genetic algorithm is
a stochastic fitting algorithm, we ensured that the filter shapes were re-
producible across different runs. However, this was complicated by two
facts: first, the ordering of the filters (filter 1, 2, or 3) was arbitrary, and
second, the filter shape was only determined up to a global phase shift due
to the integration step in the model. We overcame this problem by using
filters obtained from fits to the full datasets as templates. For each run, we
computed the cross-correlation function (CCF) between each template
filter and each of the fitted filters. The peak value of the CCFs indicated
the similarity between each filter and each template. We then as-
signed each filter based on the similarity to the templates. To align the
assigned filters, we used the time lag at which the peak correlation oc-
curred. Finally, we calculated the mean aligned filter over all cross-
validation runs and computed the correlation coefficient between this
mean and each individual aligned filter. The median correlation was then
taken as a measure of filter reproducibility.

Behavioral experiments. A female grasshopper of the species C. bigut-
tulus was placed in a soundproof chamber. Playback of signals and the
recording and detection of female response songs was controlled by a
computer. All signals in a set were presented 18 times, in randomized
order. The probability of the female to respond to the presented stimulus
was taken as the behavioral response value for a particular stimulus. This
measure was normalized by the response probability to a positive control
stimulus interleaved in the normal testing procedure. For further details
see Schmidt et al. (2008). Since behavioral data of individual animals
were noisy, we used the average responses of 33 or 45 females for each
stimulus for fitting. Note that the vast majority of animals conformed to
that population average, rendering the model fitted to these averaged
data representative of the behavioral preference predominant in natural
populations. Some animals deviated systematically from the population
average but remained an exception (see Fig. 3c).

Stimuli. The stimuli on which the model was trained differed in their
pattern of amplitude modulations; the carrier spectrum was identical across
all datasets and consisted of band-limited white noise with power between 5
and 40 kHz (sampling rate 100 kHz). The stimulus set consisted of artificial,
block-like stimuli constituting a behaviorally very effective abstraction of the
natural communication signals of grasshoppers (Fig. 1e).

The song of C. biguttulus males consists of a basic subunit: a loud,
pulse-like syllable followed by a softer pause. We tested the dependence
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of female responses on four parameters: pause duration, intensity of the
syllable plateau, onset accentuation, and offset (Fig. 1f ). Pause duration
is given by the gap between adjacent syllables and is a species-specific
temporal parameter of male calling songs. Female grasshoppers usually
exhibit bandpass tuning for this stimulus feature and prefer the conspe-
cific pause duration (von Helversen and von Helversen, 1997). The other
parameters (intensity, onset accentuation, and offset) modulate this tun-
ing for pause. Plateau intensity is defined as the average intensity of the
syllable calculated from 10 ms after the beginning of a syllable to its end.
If not stated otherwise, plateau intensity was 70 dB at the position of the
female. Onset accentuations correspond to the difference in amplitude
between the loudest point in the first 10 ms of the syllable and the mean
amplitude over the remaining plateau of the syllable. The offset is defined
as the drop in amplitude from the end of the syllable to the softest point
within the pause. Stimuli were presented in two subsets to two different
sets of animals.

In the first subset, the tuning for pause duration at different intensities
(64, 70, and 76 dB; 8 different pause durations between 4 and 48 ms) and
onsets (0, 6, and 12 dB; 8 different pause durations between 0 and 48 ms)
was tested (N & 34 animals).

Another subset tested behavioral responses in a full, 3D parameter
space: offset (0, $6, $12, and # % dB relative to syllable intensity),
onset (0, 9, and 18 dB relative to syllable intensity), and pause duration
(4, 12, 26, and 38 ms). All possible combinations of parameters yielded 36
different stimuli (3 offsets ! 3 onsets ! 4 pauses, N & 45 animals).

Stimuli with gaps were created by using a signal with optimal syllable
pause structure (80 ms syllable, 20 ms pause) and introducing six gaps
every 10 ms starting 10 ms after the beginning of the syllable and ending
10 ms before the pause started. Gap duration ranged between 1 and 7 ms.
The behavioral data for gap stimuli were taken from Ronacher and
Stumpner (1988).

Results
The model consisted of three stages: a feature extraction stage, an
integration stage, and a decision stage (Fig. 1a). The stimulus—in
our case the envelope of the song of male grasshoppers—was
processed by a bank of up to three feature detectors, which were
implemented as linear–nonlinear models. This class of models is
used to describe the transformation performed by sensory neu-
rons and constitutes a neurophysiologically plausible implemen-
tation of feature detection (Fairhall et al., 2006; Atencio et al.,
2008; Geffen et al., 2009; Clemens et al., 2012; Weber et al., 2012).
Linear–nonlinear models consist of a linear filter, corresponding
to the sensory neuron’s preferred temporal feature, and a static
nonlinearity, transforming the filtered stimulus to the neural re-
sponse. The time-varying firing rate of each feature detector is
equivalent to the sensory evidence in drift-diffusion type models
of decision making. In contrast to standard models of decision
making, we derived the structure of each feature detector—the
filter and the nonlinearity—and therewith the nature of the sen-
sory evidence directly from behavioral data (see Materials and
Methods).

The response of each feature detector was integrated over the
full stimulus duration and thereby reduced to a single feature
value. Thus, each stimulus was represented by a set of feature
values, one for each feature detector. Finally, the feature values
from different feature detectors were weighted linearly and
summed to predict the response. The model was fitted using a
genetic algorithm solely on the basis of the behavioral data with-
out incorporating any prior knowledge as to specific properties of
the feature detectors.

a

b

c

e

d f

Figure 1. Structure and performance of the model and structure of stimuli. a, Layout of our model of a perceptual decision-making system. b, Dependence of cross-validation performance on the
number of filters and the duration of the associated filters. The filter duration was set by the number of basis components used to represent the filter shapes, i.e., the shortest filter (8 ms) consisted
of a single basis component, the longest filter (64 ms) consisted of 16 basis components. c, A transition from unimodal (left: single component, 8 ms) to bimodal filters (right: two components, 11
ms) correlated with a large increase in model performance (performance 0.36 and 0.62, respectively). This suggests that the detection of transients is fundamental to song recognition in
grasshoppers. d, Filter shapes were consistent across a wide range of filter durations. Shown are the average filters across cross-validation runs of the two-filter model (first filter: red, left; second
filter: green, right) for a range of filter durations. e, Envelope of the calling song of a male C. biguttulus (gray) and its reduction to a block stimulus (black). Annotations indicate the signal parameters,
which varied in our stimulus set. f, A great variety of naturalistic patterns was created by starting from a simple block-like stimulus and changing the pause duration, the depth of the pause, the
height of the onset accentuation, and the intensity of the syllable plateau. Onset and offset were defined relative to plateau intensity.
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The model successfully reproduced behavior
We fitted the model to data from the song recognition system of
the grasshopper C. biguttulus. The behavioral response values for
90 songs were measured in playback experiments and correspond
to the response probability of female grasshoppers—a quantity
that is correlated to the attractiveness of a song and to the repro-
ductive success of a male grasshopper (von Helversen and von
Helversen, 1997; Klappert and Reinhold, 2003). The calling song
of male grasshoppers consists of many repetitions of a basic sub-
unit, a syllable–pause pair. In the experiments, we used artificial,
block-like stimuli, which constitute a behaviorally effective ab-
straction of these natural signals (Fig. 1e,f; von Helversen and von
Helversen, 1997). While the duration of the syllable was the same
for all stimuli (80 ms), the duration of the pause ranged from 4 to
48 ms (Fig. 1f). In addition, we also varied the intensity of the
syllable plateau and, relative to the plateau intensity, the accen-
tuation at the beginning of the syllable and the offset at the end of
the syllable (see Materials and Methods for a definition of these
terms).

Two feature detectors maximized model performance
To determine the number of feature detectors and the duration of
the associated filters necessary to explain behavior we assessed the
performance of models with up to three feature detectors and
filter durations between 6 and 64 ms using a cross-validation
procedure. We varied the filter duration by altering the number
of basis elements used for constructing the filters. The shortest
filters (8 ms) consisted of a single basis element only and were
therefore constrained to be unimodal and purely integrating. The
next longest filters (11 ms) were built from two basis elements
and had a bimodal, differentiating shape. Interestingly, this coin-
cided with a large (up to 60%) increase in model performance
despite an only modest increase in filter duration (Fig. 1b,c). This
suggests that the derivative-like shape of these filters captured an
essential aspect of feature extraction–the detection of transients.
Further extending the filter duration increased performance for
two-filter models by another 30%, but had a weaker impact on
one- or three-filter models (19 and 11% performance increase,
respectively). One-filter models of most durations performed
worse than two- or three-filter models, while the two-filter mod-
els approached the performance of three-filter models (r 2 '
0.88) for filters longer than 32 ms.

Remarkably, three-filter models exhibited near-optimal per-
formance even for very short filters (r 2 & 0.81 at a duration of 11
ms). However, the filter shapes were not reproducible across dif-
ferent cross-validation fits (on average 0.36 reproducibility for
three filters, each with two components). Two-filter models
reached the high performance of three-filter models for filters
longer than 32 ms and exhibited highly reproducible filters across
all cross-validation fits (e.g., 0.95 and 0.76 reproducibility for
each filter at a duration of 48 ms). Also, the general features of
both filters’ shapes were preserved across a range of durations
(35–50 ms; Fig. 1d). This high reproducibility, across individual
cross-validation runs and across a wide range of filter durations,
indicates that the structure of these models describes relevant
aspects of the behavioral preference in grasshoppers. In the fol-
lowing, we therefore described the structure and computational
properties of a two-filter model (48 ms duration).

Using a cross-validation scheme we have shown that the
model performed well on stimuli that were not used for training.
However, these test stimuli contained stimulus features that were
in the training set. We next tested whether the fitted model can

generalize to predict behavior for a new set of stimuli containing
a feature, which was not present in the training data.

One stimulus feature known to be important in guiding song
recognition is gap duration (Stumpner and Ronacher, 1994).
Natural songs of intact conspecific males exhibit relatively
smooth syllable plateaus (Fig. 1e). In contrast, injured males as
well as males of other species produce songs with deep and short
gaps in the syllable plateau. Songs containing such gaps are re-
jected by C. biguttulus females (von Helversen, 1972; Kriegbaum,
1989; von Helversen and von Helversen, 1997). We tested the
model trained on smooth block-like syllables with stimuli con-
taining gappy syllables and found that it reproduced this rejection
of gaps longer than 3 ms very well (see Fig. 4a; r 2 & 0.95). Al-
though gaps are mainly characterized by onsets and offsets, their
position within the syllable plateau and their large number ren-
ders this feature different from ordinary pauses. The faithful re-
production of the rejection of gaps thus suggests that our model
reflected important features of song recognition in grasshoppers.

The model structure revealed the computational principles
underlying song recognition in grasshoppers
Having established that our framework predicted female deci-
sions very well and that it successfully generalized to predict re-
sponses to a novel stimulus feature, we next analyzed the model
to reveal the song features constituting the cues that guided fe-
male decisions and to determine how these cues were combined.
To that end, we describe the structure of a two-filter model with
48 ms long filters and show by which computations it reproduced
the behavioral tuning.

The feature detectors were offset detectors
The filters for the two feature detectors were relatively simi-
lar. The first consisted of a positive lobe followed by a negative
one (Fig. 2a, red). The second feature’s filter exhibited an addi-
tional positive lobe (Fig. 2a, green). Both filters responded best to
offsets, that is, a decrease in amplitude (Fig. 2b, red and green
respectively, downward-pointing arrows). The second filter re-
sponded less to the accentuated onset (Fig. 2b, second,
downward-pointing arrow) than the first filter. Onsets yielded
strongly negative outputs (Fig. 2b, upward-pointing arrows).
Note that the responses of both filters were shifted in time with
respect to each other. This was due to the downstroke in the first
filter appearing later than the downstroke in the second filter
(Fig. 2a, red and green arrows). However, due to the integration
step the resulting translation of the output did not affect the
feature values. To facilitate comparison of the output of both
filters we compensated for this shift in all other figures.

The feature detectors produced binary-like responses
The output of both filters exhibited a sparse distribution, with
most values around zero (Fig. 2c, gray shaded area) and a long tail
of positive values. This was mainly due to the fact that the filters
responded strongly only to transients in the stimulus and most of
our stimuli, e.g., those without an onset accentuation, exhibited
only few transients. The nonlinearities associated with both filters
were very steep, performing a threshold-and-compress operation
on the output of each filter, letting pass only the positive tails of
the distribution of filter outputs (Fig. 2c). Accordingly, the out-
put of the nonlinearities was almost binary: zero for subthreshold
filter values and one for superthreshold filter values (Fig. 2d).

Integrating the filtered and thresholded stimulus over time
yielded feature values (referred to as f1 and f2 in Fig. 2). Those of
the first feature detector correlated strongly with the behavioral
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responses (r 2 & 0.58; Fig. 2e top). Interestingly, the feature values
of the second feature did not correlate at all with behavior (r 2 &
0.00; Fig. 2e, bottom). However, this second feature substantially
contributed to model performance, as the linear combination of
both filters yielded high correlation values with behavior (r 2 &
0.87; Fig. 2f ).

The female decision was the outcome of an excitatory and a
suppressive feature
As a last step in the model, weighting and adding both feature
values predicted the behavioral response. The weights deter-
mined how each feature influenced behavior. While the first fea-
ture had a positive weight of 3.84, the second feature exhibited a
negative weight of $1.54. The bias term was comparatively small
($0.04). As feature values were positive due to the nonlinearity,
the first feature encoded stimulus properties increasing responses
while the second feature represented stimulus properties decreas-
ing responses. We therefore termed the first feature “excitatory”
and the second feature “suppressive.” This computation of the
decision could be implemented by the interaction of excitatory
and inhibitory neurons in a small network.

Thus, behavior was the outcome of combining an excitatory
and a suppressive cue. These cues were extracted from the song by
offset detectors whose output was thresholded and integrated.

How the model reproduced behavioral preference
To better understand the role of the excitatory and suppressive
cues we next examined how their differential tuning for stimulus
parameters reproduced behavior.

The suppressive feature sharpened tuning for pause
Grasshoppers of the species C. biguttulus exhibit bandpass tuning
for pause duration, preferring pause durations between 10 and 20

ms at a syllable duration of 80 ms (von Helversen and von Hel-
versen, 1997). Very short, as well as very long pauses rarely elicit
responses in the majority of animals. As indicated by the high
performance of our model (Fig. 1b), the model very well repro-
duced this behavior (Figs. 3b, 4c,d).

To determine the contribution of the two features in the
model to behavioral responses, we quantified their tuning for
pause duration (Fig. 3a). Interestingly, the excitatory feature was
a high-pass filter for pause duration with a weak bandpass char-
acteristic for pauses longer than (20 ms, while the suppressive
feature was a strict high-pass filter. Thus, suppression was high
for long pauses and thereby created the sharp tuning for pause
duration with the steep rising and shallower falling flank as seen
in the experimental data (Fig. 3a,b).

Differences in feature weights can explain
interindividual variability
Since the model was fitted to the average behavioral data of 33 or
45 animals per stimulus, the results shown so far represent the
predominant preference functions observed in natural popula-
tions of C. biguttulus. However, few individuals deviated from the
population in interesting ways that our model could shed light
on. Some animals exhibited only a slowly falling flank for long
pauses; others preferred very long pauses (Fig. 3c). This interin-
dividual variability mapped well to the tuning of the individual
features and suggests that different response types might have
occurred due to differently weighted features. The behavioral
tuning of animals, which exhibited mainly high-pass tuning for
pause duration with only a weak bandpass characteristic, was
similar to the tuning of the first feature. This suggests little influ-
ence (corresponding to a small weight) of the second feature (Fig.
3a, green). The tuning of animals preferring long pauses resem-

a b c d e

f
f f21

Figure 2. Two-filter model for block-like stimuli. a, Filters for both feature detectors (red and green, respectively, duration 48 ms). Colored arrows mark the time at which a downstroke in the
stimulus is detected, which determines the response phase of the filter. Black arrow indicates the moment of the predicted response relative to the filter. b, Example stimulus and response (top,
black, pause duration 12 ms, onset 12 dB, offset 18 dB). The horizontal black line marks 0 dB. Red and green traces show the stimulus filtered by filter 1 and 2, respectively. The responses
corresponding to onsets and offsets in the stimulus (downward and upward arrows, respectively) are indicated by similar arrows in the filtered stimulus. Note that the responses of the second filter
(green) were delayed relative to those of the first filter as the downstrokes (colored arrows in a) occurred at different phases during each filter. For analysis, the whole stimulus set was normalized
to zero mean and unit variance. c, Nonlinearity of the first (top) and second (bottom) feature detector, transforming the output of the filter. Gray areas show distribution of output values of the filters.
d, The filtered stimulus after applying the nonlinearity. The step-like nonlinearity created pulse-like outputs. Numbers right of each trace indicate the feature values, obtained by averaging the
filtered and nonlinearly transformed stimulus over time. e, f, Behavioral responses plotted against feature values (e) and predicted responses (f ) obtained by linear combination of both feature
values (regression formula shown in f, f1, feature value of filter 1; f2, feature value of filter 2). Black dots in e and f mark the values for the example stimulus in b. r 2 values show the coefficient of
correlation between the behavior and the feature values (e) or the predicted response (f ).
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bled that of the second, suppressive feature. Making the originally
suppressive feature excitatory could reproduce this.

Relation between the structure and tuning of the
feature detectors
How did the shape of the filters and the nonlinearities determine
the tuning of the feature detectors? Both feature detectors re-
sponded only weakly to short pauses (Fig. 3a). This minimal
pause duration was limited by the width of each filter’s lobes
(compare Figs. 3d–f, left, Fig. 2a).

The differential tuning of both features for long pause dura-
tions was due to the different filter shapes and was amplified by
the integration process. The excitatory filter responded only tran-
siently to the offset at the end of the pulse (Fig. 3e, red). This
resulted in a stereotyped response to pause onset and offset for
pauses longer than 18 ms (Fig. 3f, red). However, as the number
of pause starts and ends per time decreased with increasing pause
duration, the feature detector’s average activity, its feature value,
became smaller for long pauses. This created the weak bandpass
tuning for pause duration of the first feature. In contrast, the
second filter responded throughout the pause (Fig. 3e,f, green).
The resulting average feature value was hence proportional to
pause duration (Fig. 3a, green).

Thus, while the filter shape governed tuning at short time-
scales, the integration step was instrumental in shaping the tun-
ing on longer timescales. The bandpass tuning for pause duration
was achieved by combining the two features: an excitatory feature

represented the rate of pauses and led to
the rejection of too short pauses. A sup-
pressive feature encoded the fraction of
pauses in the signal and decreased the at-
tractiveness of long pauses.

Rejection of gappy syllables was
established by the suppressive feature
Stimuli with gappy syllables were rejected
despite having an optimal pause duration
(Fig. 4a) and large values of the excitatory
feature (Fig. 4b, red). However, since
there were so many gaps per syllable, the
suppressive feature assumed relatively
large values, even though individual gaps
elicited only small responses per gap (Fig.
4b, green). This was most obvious for gaps
longer than 3 ms, since the suppressive
features outgrew the excitatory one,
which led to a strong decrease in the pre-
dicted response. Thus, the suppressive
feature conveyed the rejection of stimuli
with gaps longer than 3 ms.

The suppressive feature did not act as
an intensity gain control
While the pause duration appears to be an
important feature guiding the female de-
cision, the overall intensity of the song can
vary considerably depending on the dis-
tance between sender and receiver (Clem-
ens et al., 2010). The suppressive feature
could act as a simple mechanism for gain
control that counteracts any increases of
the intensity-related excitatory feature
(Carandini and Heeger, 2012).

However, although intensity changed the range of preferred
pauses only little, louder songs were responded to more strongly
in the data as well as in the model (Fig. 4c,d). The feature values
reveal why that was so: while the value of the excitatory feature
increased with intensity, the suppressive feature was only weakly
affected by intensity (Fig. 4e,f). It could thereby not act as a gain
control mechanism by balancing the increase of the excitatory
feature with intensity.

Large onset accentuations rendered stimuli without
pauses attractive
Pause duration is considered to be the major stimulus parameter
underlying species recognition in the Chorthippus group. The fact
that the preference functions of female grasshoppers are tuned to the
pause duration found in conspecific songs strengthens this assump-
tion (Fig. 3b; von Helversen and von Helversen, 1994). However,
two other parameters of the pause, its depth (offset) and the accen-
tuation at the end of the pause (onset), vary considerably within and
across species (Stumpner and von Helversen, 1992; Balakrishnan et
al., 2001; von Helversen et al., 2004). We therefore asked how offset
and onset shaped the tuning for pause duration.

Interestingly, onset accentuation and offset influenced pause
tuning in a complex and sometimes nonlinear manner (Fig. 5d):
the sum of onset and offset needed to exceed 18 dB to elicit strong
responses (0.5, suggesting an additive effect of both stimulus
parameters (Fig. 5d, diagonal line). Notably, stimuli with no
pauses (0 dB offset) were relatively attractive if the onset accen-

a b c

d

e

f

Figure 3. Tuning for pause duration of the feature detectors, the model, and the behavior. a, The excitatory feature was a
steeply rising, weak bandpass filter for pause duration (red) and the suppressive feature was a high-pass filter with a shallower
slope (green). Linear combination of both features yielded a sharp bandpass tuning for pause duration (blue). Tuning curves were
normalized to range between 0 and 1 to facilitate comparison. b, Pause tuning of the model and behavior (blue and black trace,
respectively). c, Pause tuning in individual grasshoppers exhibited weak bandpass tuning resembling that of the first feature (top)
or monotonously increasing tuning resembling that of the second feature (bottom). The model could reproduce these interindi-
vidual variations by changing the relative weights of both features from [3.84 $1.54] in the original model to [1 0] and [1 2],
respectively (blue traces). d, Block stimuli with 80 ms syllable and 4, 18, or 50 ms pauses. e, Stimuli in d filtered with the excitatory
and the suppressive filter (red and green, respectively; filters shown in Fig. 2a). f, Output of the excitatory and suppressive feature
detector (red and green, respectively) for the stimuli in d. Feature values shown to the right of each output trace.
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tuation was strong (Fig. 5d, lower right
tile, compare Balakrishnan et al., 2001).

Why did onset and offset interact ad-
ditively for optimal pauses? For optimal
pauses (12 ms), both onset and offset in-
creased the output of both feature detec-
tors (Fig. 5a,b). As both filters responded
best to offsets, deeper pauses yielded
greater feature values due to the stronger
down stroke at the beginning of the pause.
Surprisingly, the feature value also in-
creased with onset accentuation. This was
counterintuitive as onsets produced neg-
ative filter outputs (Fig. 2b, upward-
pointing arrows). However, onsets also
introduced an additional offset at their end
(Fig. 2b, downward-pointing arrows). Due
to the nonlinearity having thresholds
greater than zero, only the second, positive
effect of the additional offset was reflected in
the feature value (compare Fig. 2d, second
response pulse).

Thus, two properties of the model al-
lowed offsets as well as onsets to increase
performance: the invariance of the feature
values with respect to when an offset oc-
curred during the syllable and the
threshold-like nonlinearity.

Large offsets sharpen tuning for
pause duration
Remarkably, the influence of a strong offset (99 dB) on attractive-
ness depended on pause duration (Fig. 5, compare d, h). Offset
increased responses for optimal pauses (12 ms) and reduced re-
sponses for long pauses (26 ms) and accentuated onsets (Fig. 5 h,

arrow). While this did not alter the preferred pause, it affected the
width and height of the tuning curve for pause duration: tuning
for pause was widest at 12 dB offset and strongly accentuated
onsets; the tuning curve assumed its greatest peak value and
sharpest form at 99 dB offset for stimuli with onset accentuation

Figure 4. Tuning for gaps and influence of intensity. a, Behavioral response (black) and model prediction (blue). The model reproduced behavior very well (r 2 & 0.95) even though the training
set contained no stimuli with gaps in the syllable plateau. b, Tuning of both features for gap duration. c, d, Pause tuning for block stimuli without accentuated onsets and with plateau intensities of
64, 70, and 76 dB (see red, orange, and yellow insets for schematic stimuli) in the data (c) and the model (d). e, Dependence of feature values (red and green) on plateau intensity for stimuli with
a pause duration of 32 ms and an offset of 99 dB. Shown are the feature’s values, scaled by their absolute weight. The excitatory feature (red) increased with intensity, while the suppressive feature
(green) was relatively constant. f, Predicted and measured response values (blue and black, respectively) for the stimuli used in e. Responses increased with intensity.

a b c d

e f g h

i j k l

Figure 5. Impact of onset accentuation and offset on pause tuning. Response values are color coded (see color bars). Columns
correspond to the tuning of both features, the model, and the experimental data, respectively. Subtracting the suppressive from
the excitatory feature yielded the model response. Different rows correspond to different slices of the same, 3D dataset: a– d,
Dependence of feature values and behavior on onset and offset at an optimal pause of 12 ms. Stimuli for which the sum of onset and
offsets exceeds a certain value are responded to strongly ((0.5, black line in c and d). e– h, Onset and offset at a long pause of 26
ms. Large values of the suppressive feature (arrow in f ) led to reduced responses for large offsets (arrow in h). i–l, Pause and offset
at an onset of 9 dB. At large offsets, tuning of pause duration was narrowest (arrow in l ) due to large values of the suppressive
feature (arrow in j).
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(Fig. 5l, arrow). This increase in sharpness was mainly due to the
reduction of attractiveness for long pauses. The model repro-
duced these interactions well (Fig. 5g,k).

This sharper tuning for strong offsets was mostly due to the
suppressive feature growing faster with offset than the excitatory
one, eventually decreasing stimulus attractiveness for large offsets
of 99 dB (Fig. 5e,j and f,i, arrows).

Discussion
We have developed an approach that successfully reproduced
female decision making during courtship and generalized to a
novel stimulus set (Figs. 1, 4). The model explained behavior as a
combination of an excitatory and a suppressive feature. Although
these two features were detected by filters that both corresponded
most strongly to offsets in the stimulus, they differed in their
tuning for individual stimulus parameters (Figs. 2e, 3–5). This
differential tuning explained the effect of intensity (Fig. 4) as well
as shed light onto the nature of interindividual variability in be-
havior (Fig. 3c).

Putative neural correlates of the model
In addition to identifying the features underlying decision our
approach also generated a hypothesis of how these features were
extracted from the time-varying stimulus. Thus, the linear–non-
linear model can guide the search for neural correlates.

In the grasshopper, third-order auditory neurons have re-
cently been shown to create a specific and diverse representation
of grasshopper song (Clemens et al., 2011). Interestingly, these
neurons are well described by linear–nonlinear models (Clemens
et al., 2012) and some of them encode aspects of the excitatory
and of the suppressive feature underlying song recognition.

The excitatory feature was a high-pass filter for pause duration
with a slowly decreasing response for longer pauses (Fig. 3a, red).
The onset-inhibited ascending neurons AN3 and AN4 exhibit
similar tuning (Römer and Seikowski, 1985; Krahe et al., 2002).
The second, suppressive feature linearly encoded pause duration
(Fig. 3a, green). Such tuning is displayed by the ascending neuron
AN12 (Creutzig et al., 2009). While AN12 ’s role as an encoder of
pause duration was appreciated previously, it was interpreted as
an excitatory feature. In contrast, our approach assigned it a sup-
pressive role (compare Creutzig et al., 2010).

The model extracted these features by responses to offsets
(Fig. 2). However, electrophysiological evidence suggests that the
candidate neurons achieve this tuning in a different way, since
they do not respond to offsets but spike phasically or tonically
after onsets (Krahe et al., 2002; Creutzig et al., 2009). Further
studies are necessary to determine whether the other stimulus
parameters in our dataset influence the tuning of these candidate
neurons in the same manner as the features in the model.

We emphasize that only the excitatory feature exhibited a con-
siderable correlation with behavior (Fig. 2e). The second feature,
although substantially contributing to model performance, did
not correlate at all with the full set of behavioral responses. This
highlights that a neuron’s tuning need not generally correlate
with trial-averaged behavior to be behaviorally relevant. Thus,
studies seeking neural correlates of behavior are prone to miss
important information if they consider each neuron’s tuning in
isolation. Population-level analyses are thus more suitable to re-
veal the behavioral impact and importance of a neuron (compare
Haefner et al., 2013).

In the model, we have used a perfect integrator. However, a
leaky integrator is physiologically more plausible and many mod-
els of decision making rely on leaky integration. Given that our

stimuli consisted of sequences of identical syllables and that the
integration time probably exceeds the duration of an individual
syllable (von Helversen, 1972, Ronacher and Krahe, 1998), in-
cluding leakiness would not affect our results. In the future, sig-
nals consisting of mixtures of different syllables could be used to
investigate properties of the integrator like integration time and
leakiness.

The features underlying species recognition in grasshoppers
Pause duration is considered the major song feature isolating
different members of the Chorthippus species group (Stumpner
and von Helversen, 1992; von Helversen and von Helversen,
1994). Curiously, behavioral tuning for pause duration was
strongly modified by other stimulus parameters (Fig. 5). Even
worse, strongly accentuated onsets rendered songs lacking any
pause attractive (Fig. 5d; Balakrishnan et al., 2001). This ques-
tions the validity of pause duration as the feature separating
grasshopper species.

There are two, not mutually exclusive explanations to resolve
this contradiction: either the pause durations of different species
are separated well enough to account for the additional variability
in the preference functions introduced by offset and onset accen-
tuation found in natural songs (von Helversen and von Hel-
versen, 1994; Hennig et al., 2004; Safi et al., 2006; compare
Amézquita et al., 2011) or these additional parameters could be
differentially expressed in different species. In the latter scenario,
the combinatorial coding of stimulus parameters yields a multi-
dimensional compound feature and may support species separa-
tion (compare Wilczynski et al., 1999; Clemens and Hennig,
2013).

The nature of temporal information in
communication signals
In our model, perceptual decisions are based on the integration of
sensory evidence provided by short-term feature detectors over
the stimulus duration. Thereby, we assume that the exact tempo-
ral pattern of the output of feature detectors is not necessary to
explain behavior. Such a mode corresponds to “atomized ” per-
ception and cannot reproduce Gestalt-like phenomena. This has
consequences for the nature of temporal information in grass-
hopper song as well as in other systems implementing a similar
mode of perceptual decision making.

Two competing theories of song recognition have been in-
spired by the observation that communication signals of many
insects exhibit a relatively simple, repetitive structure (von Hel-
versen, 1972; Hoy et al., 1988). However, both theories are not
consistent with experimental findings.

The first theory is based on the fact that the rhythmic structure
of natural songs yields a parsimonious description of the enve-
lope by a harmonic power spectrum. However, careful experi-
ments testing whether the power spectrum alone was sufficient to
explain female selectivity have falsified this hypothesis and dem-
onstrated that the phase spectrum of the song—and hence the
song’s temporal pattern— does play a decisive role in song eval-
uation (von Helversen and von Helversen, 1998; Schmidt et al.,
2008, compare pitch perception in humans: de Cheveigné, 2005).

The second theory acknowledged that the temporal structure
of song was the decisive feature of the song. Exploiting the fact
that the song is composed of many repetitions of a simple sub-
unit, it assumed that females employ a Gestalt-like mode of song
evaluation, relying on the match of each subunit with an internal,
prototype syllable (Hennig et al., 2004). However, a mixture of
very different and unattractive subunits can be highly attractive,
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disproving the idea of a static internal template (von Helversen
and von Helversen (1998), compare experiments with shuffled
song elements in crickets: Pollack and Hoy, 1979; Hennig and
Weber, 1997).

These findings suggest that the temporal pattern of the stim-
ulus does play a role, but that the precise sequence of that pattern
on a global scale is not important. Our model reconciles these
facts by defining temporal features on a short timescale by the
shape of the linear filters while discarding the timing of those
features within a signal through the averaging operation (Fig. 2d).
In the model as in behavior the local phase spectrum—the filter’s
shape—strongly affects signal attractiveness while the global
phase of a feature—its timing within the song— has no impact on
behavioral responses.

This mode of perceptual decision making has consequences
for how a neuronal representation of behaviorally relevant fea-
tures should be organized. In many systems, the temporal fidelity
of the neuronal responses decreases as one ascends a neuronal
pathway while the specificity of responses increases (Joris et al.,
2004). This is also the case in grasshoppers, where the represen-
tation is very precise and generic in the periphery and becomes
less precise and more specific at the level of higher order neurons
(Machens et al., 2001; Vogel et al., 2005; Clemens et al., 2011).
The system seems to trade information of the “when” of temporal
features—their timing—for the “what” of temporal features—
their specific shape. Since timing information is discarded in
the averaging step of our model (Fig. 2), there is no need to
sustain a precise timing of spikes in higher order neurons.
Temporal precision being energetically costly (Niven et al.,
2007), this is an efficient implementation of a perceptual
decision-making system.

Conclusion and extensions
We used the simple and innate acoustically driven behavior of
grasshoppers to demonstrate the power of a model for decision
making. We explained behavior not in terms of abstract stimulus
parameters but based on a plausible mode of feature extraction.
This enabled a simple, parsimonious description of behavior and
yielded a “natural ” stimulus space, which is likely to better match
the feature space in which song production and recognition
might have evolved (Ryan and Getz, 2000; Geisler and Diehl,
2003; Ryan and Rand, 2003; Akre et al., 2011).

Since our approach is general, it can provide a toolbox to
compare feature detection and combination across different spe-
cies, different tasks or training paradigms, or to develop norma-
tive theories of perceptual decision making (Geisler and Diehl,
2003; Beck et al., 2008; Geisler et al., 2009).

Recently, we have applied this framework to behavioral data
from two species of crickets seeking to elucidate general princi-
ples of song recognition (Clemens and Hennig, 2013). This
yielded filters similar to Gabor filters, which are found in early
acoustic and visual areas. These Gabor filters allowed us to repro-
duce a large variety of known preference functions found in in-
sects and anurans. In the present paper, we used the framework to
reproduce and describe the behavioral preference for a single
species in more detail. The filters found in this paper also resem-
bled Gabor filters. Interestingly, this class of filters has been im-
plied in redundancy reduction and efficient coding in the visual
and auditory system (Smith and Lewicki, 2006). The fact that
behavioral filters in grasshoppers fall into the same class suggests
that grasshoppers implement an efficient code for features of
song (Clemens et al., 2011).
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interference and recognition space within a complex assemblage of den-
drobatid frogs. Proc Natl Acad Sci U S A 108:17058 –17063. CrossRef
Medline

Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlinearities
in auditory cortical neurons. Neuron 58:956 –966. CrossRef Medline

Balakrishnan R, von Helversen D, von Helversen O (2001) Song pattern
recognition in the grasshopper Chorthippus biguttulus: the mechanism
of syllable onset and offset detection. J Comp Physiol A 187:255–264.
CrossRef Medline

Beck JM, Ma, WJ, Kiani R, Hanks T, Churchland AK, Roitman J, Shadlen
MN, Latham PE, Pouget A (2008) Probabilistic population codes for
Bayesian decision making. Neuron 60:1142–1152. CrossRef Medline

Carandini M, Heeger DJ (2012) Normalization as a canonical neural com-
putation. Nat Rev Neurosci 13:51– 62. CrossRef Medline

Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen MN
(2011) Variance as a signature of neural computations during decision
making. Neuron 69:818 – 831. CrossRef Medline

Clemens J, Hennig MR (2013) Computational principles underlying song
recognition in insects. J Comput Neurosci. Advanced online publication.
Retrieved Feb. 2013. doi:10.1007/s10827-013-0441-0. CrossRef

Clemens J, Weschke G, Vogel A, Ronacher B (2010) Intensity invariance
properties of auditory neurons compared to the statistics of relevant nat-
ural signals in grasshoppers. J Comp Physiol A Neuroethol Sens Neural
Behav Physiol 196:285–297. CrossRef Medline

Clemens J, Kutzki O, Ronacher B, Schreiber S, Wohlgemuth S (2011) Effi-
cient transformation of an auditory population code in a small sensory
system. Proc Natl Acad Sci U S A 108:13812–13817. CrossRef Medline

Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations un-
derlying temporal and population sparseness in the auditory system of the
grasshopper. J Neurosci 32:10053–10062. CrossRef Medline

Creutzig F, Wohlgemuth S, Stumpner A, Benda J, Ronacher B, Herz AV
(2009) Timescale-invariant representation of acoustic communication
signals by a bursting neuron. J Neurosci 29:2575–2580. CrossRef Medline

Creutzig F, Benda J, Wohlgemuth S, Stumpner A, Ronacher B, Herz AV
(2010) Timescale-invariant pattern recognition by feedforward inhibi-
tion and parallel signal processing. Neural Comput 22:1493–1510.
CrossRef Medline
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