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Abstract Many animals produce pulse-like signals during
acoustic communication. These signals exhibit structure on
two time scales: they consist of trains of pulses that are often
broadcast in packets—so called chirps. Temporal parame-
ters of the pulse and of the chirp are decisive for female
preference. Despite these signals being produced by ani-
mals from many different taxa (e.g. frogs, grasshoppers,
crickets, bushcrickets, flies), a general framework for their
evaluation is still lacking. We propose such a framework,
based on a simple and physiologically plausible model. The
model consists of feature detectors, whose time-varying out-
put is averaged over the signal and then linearly combined
to yield the behavioral preference. We fitted this model
to large data sets collected in two species of crickets and
found that Gabor filters—known from visual and auditory
physiology—explain the preference functions in these two
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species very well. We further explored the properties of
Gabor filters and found a systematic relationship between
parameters of the filters and the shape of preference func-
tions. Although these Gabor filters were relatively short,
they were also able to explain aspects of the preference for
signal parameters on the longer time scale due to the inte-
gration step in our model. Our framework explains a wide
range of phenomena associated with female preference for
a widespread class of signals in an intuitive and physiolog-
ically plausible fashion. This approach thus constitutes a
valuable tool to understand the functioning and evolution of
communication systems in many species.
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1 Introduction

Throughout the animal kingdom acoustic signals are used
for intra-specific communication. In many insects, acoustic
signals play a key role for mate finding and selection. Sex-
ual selection and speciation are the major factors shaping
acoustic signals. Hence, understanding the computational
principles underlying the processing of these courtship sig-
nals is a key to understand the principles underlying the
evolution of communication systems (Phelps and Ryan
1998; Akre et al. 2011).

The temporal patterns of many communication signals
convey information on multiple time scales. For instance, in
human speech, the voicing and the transition between for-
mants occupy power between 30 and 50 Hz while syllables
are produced at a rate of 4–7 Hz (Giraud and Poeppel 2012).
Although the songs of many insects and frogs exhibit a
much simpler, pulse-like pattern, they too have a multi-scale
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temporal structure (Otte 1992; Gerhardt and Huber 2002)
(Fig. 1a). Trains of stereotyped pulses at a rate between
10–200 Hz are produced in packets—so-called chirps or
bouts—at a rate of up to 5 Hz. This principal structure is
shared by many insect groups like crickets (Alexander 1962;
Otte 1992), bush crickets (Schul 1998), grasshoppers (von
Helversen 1972; Safi et al. 2006), fruit flies (Hoy et al. 1988)
as well as frogs (Gerhardt and Huber 2002).

Insects display a stereotyped, easily quantifiable and
highly selective behavior for parameters of the pulse
and the chirp (Fig. 1b and c). Behavioral experiments,
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Fig. 1 Song patterns and behavioral preference for two species of
crickets a–d Song of Gryllus bimaculatus (a, b) and Gryllus locorojo
(c, d) with the chirp structure (a, c) and a close-up of one chirp show-
ing the pulse structure (b, d). Horizontal bars in (c) and (d) indicate the
time scale for plots (a, c) and (b, d), respectively. e, f Schematic rep-
resentation of the preferred parameters of the pulse (e) and the chirp
(f) for Gryllus bimaculatus (red ellipses) and Gryllus locorojo (blue
ellipses). The diagonal line in (e) corresponds to a duty cycle of 0.5
(equal pulse duration and pause). The anti-diagonal line in (e) marks
patterns for which the sum of the pulse and the pause is 40 ms and
thus correspond to a pulse period of 40 ms. Lines in (f) correspond to a
chirp duration of 200 ms and a chirp pause of 400 ms respectively. g, h
Phonotaxis values to songs with varying pulse and chirp duty cycle for
Gryllus bimaculatus. Stimuli with small, intermediate and high pulse
(g) or chirp (h) duty cycles are shown on top (small horizontal bars in
(g) and (h) correspond to 200 ms)

combined with electrophysiological studies have provided
insights to song pattern recognition in some species
(Webb et al. 2007; Creutzig et al. 2010; Hennig 2003;
Schmidt et al. 2008; Kostarakos and Hedwig 2012;
Zorovic and Hedwig 2011). However, we still lack a
general understanding of the computational principles
underlying the evaluation of this widespread class of sig-
nals. Most progress is confined to the short time scale
of the pulse, while only few studies have addressed the
processing of the chirp structure on the long time scale
(but see Grobe et al. 2012). Here, we propose a com-
putational framework for processing in sensory pathways
that is able to explain behavioral selectivity on both
time scales.

We applied a simple and generic model of a percep-
tual decision making system to the problem of evaluating
pulse-like patterns (Fig. 2a). We employed linear-nonlinear
models as feature detectors that are widely used to model
the input-output function of sensory neurons in insects
and vertebrates (Clemens et al. 2012; Machens et al.
2001; Nagel and Doupe 2006). The output of these linear-
nonlinear models is integrated over the stimulus and linearly
weighted to yield a scalar value equivalent to the behav-
ioral response. We successfully fitted this model using
preference data for two species of crickets. Generalizing
the structure of these models revealed that it can repro-
duce the majority of principal preference functions known
in insects.
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Fig. 2 Model structure and dependence of test performance on the
number of feature detectors. a The model consisted of three stages.
First, the signal’s envelope s(t) was processed by a bank of feature
detectors (i = 1–3) which were modeled as linear-nonlinear units. A
short linear filter (duration 64 ms) was followed by a static, sigmoidal
nonlinearity. Second, the output of each feature detector, gi(t), was
integrated over time and thereby reduced to a feature value vi . Third,
the set of feature values—one for each feature detector per stimulus—
was linearly weighted to yield a scalar behavioral response score ŷ. b
Dependence of model performance on the number of feature detectors
in the model. For both species, two features saturated test performance
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2 Methods

2.1 Preference data

Behavioral preferences were estimated on a walking com-
pensator (for details see Hennig 2009). The behavioral
response was measured as the directionality of the walk of
the female towards the loudspeaker and was expressed as
a normalized phonotaxis value (Schul 1998). A phonotaxis
value of 0.8–1.0 corresponded to the female’s directionality
in response to a pattern similar to the song of a conspecific
male (positive control). Scores of 0.0 corresponded to undi-
rected phonotaxis as it is usually observed during silence
or when a pure tone with the conspecific carrier frequency
was presented (negative control). For fitting the model, we
averaged the phonotaxis values of 20–90 animals. The stan-
dard deviation of phonotaxis values between animals was
around 0.2.

The data sets consisted of 489 stimuli for Gryllus bimac-
ulatus and 148 stimuli for Gryllus locorojo. The carrier
frequencies were chosen to match the carrier frequency of
conspecific calling songs (4.5 kHz for Gryllus bimaculatus,
5.0 kHz for Gryllus locorojo). The envelopes covered a large
range of attractive and unattractive patterns. The majority
of them were pulse-like patterns with a binary amplitude
distribution and exhaustively sampled the space of pulse
and chirp parameters (see e.g. Fig. 1g, h). Some patterns
were constructed by superposing sinusoids with different
frequencies yielding patterns with complex modulations.
The stimuli and corresponding behavioral responses are
described in detail in Hennig (2009), Schneider and Hennig
(2012) and Grobe et al. (2012) for Gryllus bimaculatus, and
in Rothbart and Hennig (2012a) for Gryllus locorojo.

For fitting the models we restricted the data sets to reduce
computation time and improve performance of the fitting
algorithm. We chose stimuli with a chirp duty cycle between
0.1 and 0.67 and chirp periods shorter than 600 ms. For
Gryllus locorojo we imposed no constraint on the chirp
duty cycle but excluded stimuli with a chirp period longer
than 1000 ms. The stimulus sets used for fitting the mod-
els had a size of 316 for Gryllus bimaculatus and 100 for
Gryllus locorojo.

While the calling songs of crickets may last for many
hours, the great stereotypy and temporal redundancy of the
songs allowed us to consider only a single chirp period for
fitting. By setting the boundary conditions for the convolu-
tion appropriately, we emulated a situation were this chirp
was embedded in the middle of a long stretch of song.

2.2 Model structure

The envelope of the song formed the input to the model. The
envelope was extracted from the raw waveform by the root

mean square method, transformed to a logarithmic decibel
scale and thresholded at 35 dB.

This input, s(t), was processed by up to three paral-
lel feature detectors, which were implemented as linear-
nonlinear models. The signal was filtered fj (t) =∫ ∞
−∞ s(τ )hj (t − τ)dτ and subsequently transformed with a

sigmoid nonlinearity gj (t) = 1/(1 + exp(−ajfj (t) + bj )).
The subscript j indexes the feature detector, hj is the
linear filter, fj the filtered stimulus, aj is the steepness
of the sigmoidal, bj is the input for which the nonlinearity
assumes its half-maximal value, gj the output of the feature
detector.

The output of each feature detector was integrated over
the whole stimulus and thereby reduced to one feature value,
vj , per feature detector: vj = 1/T

∫ T

0 gj (t). The feature
values were then linearly weighted to yield a predicted
preference value: ŷ = w0 + ∑

j wj vj for the stimulus.

2.3 Model fitting and evaluation

The envelopes in each data set were normalized such that the
full stimulus set had zero-mean and unit-variance. Param-
eters for the feature detectors—the linear filter hj and the
parameters for the nonlinearity aj and bj —were learned
using a genetic algorithm (Mitchell 1998). Filters hj had
a duration of 64 ms and were represented as a weighted
sum of 16 raised-cosine basis functions (Pillow et al. 2008).
This sped-up training time by reducing stimulus dimen-
sionality and enforced smooth filters. The weights wj for
the individual features were determined by standard linear
regression. Thus, each feature detector was described by 18
parameters—16 coefficients for the filter and two param-
eters for the non-linearity—and one feature weight in the
weighting stage. The models containing two feature detec-
tors discussed below thus have of 2 · 19 parameters plus a
bias term w0.

Model performance was quantified as the coefficient of
correlation between the behavioral responses and the model
output by leave-one-out cross-validation. For analysis of the
model structure (Fig. 3a–d, f), we trained the model on the
full data set. This yielded a structure and performance sim-
ilar to that obtained in the majority of cross-validation runs.

2.4 Visualization of 2D response profiles

To produce the response surfaces in Fig. 5a and b, we used
the Matlab function TriScatteredInterp with natural
neighbor interpolation. The temporal stimulus parameters
pulse period and global duty cycle were determined from
the envelopes of the stimuli used for fitting the model.
Pulse period was given by the interval between the onset of
subsequent pulses in a chirp. Global duty cycle was the inte-
gral of the envelope, normalized by its length. Chirp period
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Fig. 3 Structure and processing properties of the models fit to exper-
imental data. Rows correspond to the different species: i Gryllus
bimaculatus, ii Gryllus locorojo. a Shape of the filters associated with
the first (red) and second (blue) feature detector. b Nonlinearities asso-
ciated with the first (red) and second (blue) feature detector. c Transfer
functions for the two features for pulse period. Feature values are
normalized to a range between 0 and 1. Pulse duty cycle of the sig-
nals was 0.5. The chirp parameters were chosen to be optimal for
the respective species. d Transfer functions for behavior (black) and
model predictions (orange). Same stimuli as in (c). e Behavioral and

modeled phonotaxis values for all stimuli in the data set. f Process-
ing of an exemplary stimulus by the model for Gryllus bimaculatus.
top: stimulus, middle: stimulus filtered by the first (red) and the sec-
ond (blue) filter, bottom: filtered stimulus after nonlinearity. Averaging
these last traces over the full stimulus yields feature values of 0.18
and 0.11, respectively. The feature values are then linearly combined
according to: 0.55+2.38·0.18−1.89 ·0.11, to yield a preference value
of 0.77 which is close to the measured one of 0.81. Note the negative
weight for the second feature

was taken as the interval between the onset of adjacent
chirps. We excluded stimuli for which temporal parameters
could not be unequivocally defined, e.g. due to complexly
modulated envelopes or small modulation depths.

3 Results

The preference data of two species of crickets, Gryllus
bimaculatus and Gryllus locorojo (Weissman et al. 2012),
were used for fitting the linear-nonlinear models. The call-
ing song of both species consists of pulses with a charac-
teristic duration and pause. These pulses are produced in
packets, called chirps, which themselves have a species-
specific duration and pause (Fig. 1a–d). This stereotyped
structure can be described compactly in a four dimensional
parameter space, comprising the duration and pause of the
pulse and the duration and pause of the chirp. From these
basic parameters, two further important parameters can be
derived. First, the period which is given by the sum of the
duration and the pause and which corresponds to the pulse
or chirp rate; and second the duty cycle, which measures the
duration of the pulse or chirp relative to the period and is
related to the signal’s energy.

The selectivity for the pulse parameters in the two species
considered here was most compactly described as a prefer-
ence for a narrow range of pulse periods (Fig. 1c, Rothbart
and Hennig 2012a; Hennig 2009; Grobe et al. 2012). In
addition to pulse period, pulse duty cycle was also impor-
tant (Fig. 1g). While Gryllus bimaculatus preferred songs
with a duty cycle greater than 0.5, Gryllus locorojo was less
selective for duty cycle. Likewise, the two species exhib-
ited specific preferences for parameters on the time scale of
the chirp. (Fig. 1c, h). Gryllus bimaculatus mainly preferred
short chirp pauses, while Gryllus locorojo responded best to
short chirp durations and longer chirp pauses.

3.1 Model for song recognition in two species of crickets

To derive principles underlying the preference for param-
eters of the songs on both time scales, we fitted a simple
model of a perceptual decision-making system (Fig. 2a)
to preference data for Gryllus bimaculatus and Gryllus
locorojo.

In both species, models with two feature detectors clearly
outperformed models with a single filter, while inclusion of
a third filter barely increased performance (Fig. 2b). For fur-
ther analysis, we used models with two feature detectors,



J Comput Neurosci (2013) 35:75–85 79

which explained the preference functions very well (Fig. 3e,
r2 = 0.75 and 0.67, respectively). We will now briefly can-
vas the structure of the model for each species, show the
structure of the two feature detectors and describe their role
in reproducing the behavioral tuning for pulse.

3.1.1 Linear-nonlinear models for Gryllus bimaculatus

The model for the first species, Gryllus bimaculatus, exhib-
ited two differently shaped filters (Fig. 3a (i)). The first
filter resembled a Gabor function, which can be constructed
by multiplying a sinusoidal modulation and a Gaussian
envelope. The underlying sine had a frequency of approx-
imately 2 periods per 64 ms and responded strongest to
a pulse period of 30–40 ms (Fig. 3c (i), red). The sec-
ond filter’s main mode was slower (1 period per 64 ms)
and this filter accordingly preferred longer pulse periods
(longer than 60 ms, Fig. 3c (i), blue). At the animal’s pre-
ferred pulse period, the second filter produced a single peak
at the onset of the chirp (Fig. 3f, blue). The nonlineari-
ties for both filters were relatively similar, though that of
the second filter was slightly shallower and more sensitive
(Fig. 3b (i)).

In the model, the signal envelope was processed by these
two filter-nonlinearity pairs in parallel (Fig. 3f). The time-
averaged output of each of these feature detectors yielded
a scalar feature value, which was linearly combined to the
phonotaxis value. Consequently, the weights of each fea-
ture indicated whether a given feature was associated with
increases or decreases in response and hence, whether that
feature was “excitatory” or “suppressive”. The first fea-
ture detector was associated with a positive weight of 2.38
and was excitatory. The second feature detector had a neg-
ative weight of -1.89 and was hence suppressive. Due to
the higher pass band of the second filter (Fig. 3c (i), blue),
responses to pulse periods longer than 60 ms were sup-
pressed, yielding the narrow tuning seen in the behavior
(Fig. 3d (i)).

Thus, in Gryllus bimaculatus, an excitatory feature estab-
lished the basic band-pass tuning for pulse period (compare
Fig. 1c). The second filter sharpened this tuning by sup-
pressing responses to longer pulse periods.

3.1.2 Linear-nonlinear models for Gryllus locorojo

The model for the second species, Gryllus locorojo, exhib-
ited two similar, Gabor-like filters (Fig. 3a (ii)). Both filters
differed in their modulation frequency, with the first filter
having a smaller modulation frequency than the second (2.0
periods and 2.5 periods per 64 ms, respectively). Accord-
ingly, the tuning of both filters for pulse period differed: the
first filter responded stronger to longer periods than the sec-
ond filter (Fig. 3c (ii)). The nonlinearity associated with the

first filter had a higher threshold and a steeper slope than
that of the second one (Fig. 3b (ii)).

As in Gryllus bimaculatus, the first filter was excitatory
while the second filter was suppressive (weights 11.45 and
-9.3, respectively). However, in contrast to the first species,
in Gryllus locorojo the suppressive feature preferred shorter
periods and hence sharpened the basic tuning established by
the first feature by suppressing responses to short periods
(Fig. 3c (ii) and d (ii)).

3.1.3 General features of linear-nonlinear models
for both species

The results on the two species have shown that the simple
model developed here reproduced behavior well (Fig. 3e).
Tuning for pulse period was the outcome of the interaction
of an excitatory and a suppressive feature (Fig. 3c). While
one feature established the basic behavioral tuning, the other
feature usually sharpened it. We found two principal types
of filters (Fig. 3a): Gabor-like filters with a band-pass tun-
ing for pulse period (both filters for Gryllus locorojo, first
filter for Gryllus bimaculatus) and unimodal, low-pass fil-
ters with a clear preference for long pulse periods (second
filter for Gryllus bimaculatus).

3.2 Modeling the diversity of preference functions for pulse
in insects with Gabor filters

The majority of filters derived from the preference data
in the two species of crickets were Gabor-like (Fig. 3a)
and exhibited a band-pass tuning for pulse period (Fig.
3c, red). Gabor filters are known in many sensory sys-
tems and are the basic building block of models of the
visual and auditory pathways of vertebrates and inverte-
brates (e.g. Priebe and Ferster 2012; Smith and Lewicki
2006). We sought to generalize the results obtained for
Gryllus bimaculatus and Gryllus locorojo to explain the
diversity of preference functions for pulse in other species.
Many orthopterans exhibit preference functions similar to
those found in the two species of crickets used for fitting
the initial models but display different preferred periods
and duty cycles (Fig. 4a (i), Hennig 2009; Rothbart and
Hennig 2012a, b; Hennig 2003; Schul 1998), or reso-
nant behavior (Fig. 4a (ii), Schul 1998; Bush and Schul
2005). Other species have preference functions with a
fundamentally different shape, e.g. band-pass filters for
pulse duration or pause duration (Fig. 4a (iii), Schul 1998;
Hennig 2003), or high-pass filters for duty-cycle (Fig. 4a
(iv), Schul 1998).

To better link the structure of the filters to that of the
preferred stimulus as well as to explore whether Gabor
filters can explain the biological diversity of preference
functions we built a simplified version of our perceptual



80 J Comput Neurosci (2013) 35:75–85

10 ms

40 Hz

100 Hz

20
0

40 60 80 100

20

40

be
st

 p
er

io
d 

[m
s]

1/f
best period
at DC=0.5

m
od

el
 o

ut
pu

t

20 ms

60 ms

100 ms

20 40 60 80 100
0

0

0.5

1.0

m
od

el
 o

ut
pu

t

m
od

el
 o

ut
pu

t

0.5

1.0

0.5

1.0

period [ms] at a duty cycle of 0.5

pu
ls

e 
pa

us
e 

[m
s]

0 0.5 1

duty cycle at a period of 20 ms

duty cycle at a period of 20 msfilter frequency [Hz]

b

c

d

e

f

-0.1
0

0.1

duration-tuned pause-tuned

pulse duration [ms]
10 20 30 40 5010 20 30 40 50

10

20

30

40

50

0.0

0.3

0.7

1.00 0.5 1

 

 

 

10

20

30

40

50

40 ms

period-tuned duty-cycle-tuned

i ii

iii iv

pu
ls

e 
pa

us
e 

[a
u]

a

pulse duration [au]

duty-cycle-tunedivpause/duration-tunediiiperiod-tunedi resonant tuningii
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decision-making system. It consisted of a single Gabor fil-
ter, and a piece-wise linear nonlinearity approximating a
sigmoid with a threshold and a saturation. The integral
output of such a feature detector was taken as being pro-
portional to the phonotaxis value. Note that the reduced,
single–filter model would exhibit reduced performance
when probed with the full stimulus set used to fit the mod-
els in Fig. 3 (Fig. 2b). However, since in this section we
were exclusively interested in reproducing the selectivity for
pulse pattern in different species, we used stimuli with a
fixed chirp structure.

We examined the impact of the Gabor filter’s parame-
ters on tuning for pulse duration, pause, period and duty
cycle. The filters were parameterized as exp(−(t/

√
2/σ)2)·

sin(2πf t + φ) + ω. f was the frequency of the sinu-
soidal modulation. φ was the phase of the sinusoid. σ

corresponded to the width of the Gaussian envelope and
controlled the duration of the filter. ω was an offset. These
reduced models thus consisted of 4 parameters for the filter
plus 3 parameters for the piece-wise linear nonlinearity.

The modulation frequency f determined the preferred
pulse period of the model, with slower modulations lead-
ing to longer preferred periods (Fig. 4b). Filter duration
σ determined the sharpness of tuning for pulse period
(Fig. 4c for f =50 Hz). For longer filters, resonant tun-
ing arose in the form of additional peaks in the tuning
curve (Fig. 4c, arrow). Resonant phenomena are known in
song recognition of a species of bush crickets, Tettigonia
cantans (Bush and Schul 2005). Note that these peaks need
not necessarily be visible if the threshold of the nonlin-
earity following the filter is sufficiently high. In addition,
there existed a trade-off between the sharpness of tun-
ing along the period and the duty cycle axes (Fig. 4d).
That is, while longer filters led to sharper tuning for pulse
period, they yielded broader tuning for duty cycle (compare
Figs. 4c and d).

Offset ω and phase φ also had an impact on the response
of Gabor filters for pulse-like signals (Figs. 4e, f). Off-
set changed the preferred duty cycle from 0.5 for no
offset (ω = 0, Fig. 4e) to higher values for positive
(ω = 0.1) and smaller preferred duty cycles for negative
offsets (ω = −0.1). Thus, Gabor filters were not only
able to reproduce the species-specific differences for pulse
period (via the frequency f , Fig. 4b) but also for pulse duty
cycle (via the offset ω). That is, the preference for duty
cycles between 0.5 and 0.75 in Gryllus bimaculatus can be
created by equipping the Gabor filter with a positive offset
(compare Figs. 1c and 4f (iii)).

While offset changed the duty cycle preference, phase
tended to change the extension of the preferred stimuli
along the principal axes for pulse duration (φ = 0) and
pause (φ = π) (Fig. 4f, (i) and (ii)). In conjunction with
large absolute offsets, this yielded preference functions

which were tuned to a small range of durations or pauses.
Similar response profiles are known in crickets (Teleogryl-
lus commodus, Hennig 2003) and bushcrickets (Tettigonia
viridissima, Schul 1998).

Gabor filters with a slow modulation relative to the fil-
ter duration acted as low-pass filters and created preference
functions which corresponded to duty-cycle filters (Fig. 4f,
(iv)). Such principal forms of preference are known in a
species of bushcrickets, Tettigonia caudata (Schul 1998).

Our modeling results show that a simple Gabor-like filter
is able to reproduce many tuning properties for parameters
of the pulse’s time scale found in crickets and other insects,
including the preference for pulse period and duty cycle,
resonant phenomena, and preference for pulse duration and
pause. Furthermore, we have shown that there exists a sim-
ple and systematic relationship between parameters of the
Gabor filter and the shape of the preference function.

3.3 A new space for song signals

Above, we have shown that Gabor filters well reproduce
most forms of preference for parameters of the short time
scale of the pulse. Are Gabor filters also sensitive to aspects
of the longer time scale of the chirp? Although the filters
themselves were relatively short (64 ms) when compared to
the time scale of the chirp, the integrating stage of our model
also led to encoding of information about long time scales.

The nature of this information depended on whether the
underlying filter was mainly differentiating or integrating.
An ideal differentiating filter responded stereotypically at
the onset of each pulse. Since its output was integrated over
the full signal in our model, the resulting feature value was
proportional to the number of pulses in the signal, irrespec-
tive of the duty cycle. The Gabor filters exhibited a mainly
differentiating character through the modulating sinusoid.
In contrast, a purely integrating filter responded proportion-
ally to the stimulus’ integral and thereby encoded the total
energy or the global duty cycle of the song.

Thus, in addition to reproducing the selectivity for pulse
period and pulse duty cycle conveyed by the Gabor filter
stage (Fig. 4) the feature values also encoded the global
duty cycle or overall pulse rate over the signal through the
integration stage. Can this reduced signal space comprehen-
sively and parsimoniously explain the preference in both
species? We determined the pulse period and global duty
cycle of our stimuli to visualize female phonotaxis values in
this parameter space (Fig. 5a–b).

Selectivity for pattern in both species was described by
the combination of two band-passes which aligned well with
the principal axes ”pulse period” and ”global duty cycle”
(Fig. 5a, b). However, some stimuli with optimal pulse
period and global duty cycle displayed low phonotaxis val-
ues (Fig. 5c, d). For Gryllus locorojo, two outliers exhibited
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Fig. 5 Filters for chirp duty
cycle. a, b Response profiles in
the feature space spanned by
pulse period and global duty
cycle for Gryllus bimaculatus
(a) and Gryllus locorojo (b).
Preference is color coded (see
colorbar in (a)). c–d Preference
values for stimuli with optimal
pulse period and overall duty
cycle (black outline in a and b)
for both species. The chirp
period is color coded (see
legend right to each panel). Blue
dots in (c) indicate stimuli with
very long chirp periods
(> 650 ms). Black arrows
indicate outliers with pulse
pauses below the temporal
resolution of the animal (d)
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a very short pulse pause (3 ms) (Fig. 5d, arrows) which was
likely below the temporal resolution of the cricket’s audi-
tory system and hence prevented the detection of the correct
pulse period. The outliers for Gryllus bimaculatus exhibited
either very short or very long chirp periods (Fig. 5c, blue and
red dots). Chirp period was a parameter which could not be
extracted from the output of the filters as they only discrim-
inated between different chirp duty cycles or pulse rates.
Apparently there is a limitation for the correct prediction of
patterns on very long time scales. Nevertheless, preference
functions in the two species of crickets can be explained by
selectivity for pulse period and global duty cycle over a wide
range of patterns limited only by very short and very long
time constants on either time scale.

4 Discussion

In this study we proposed a simple framework to under-
stand the computational principles underlying the recog-
nition of pulse-like songs as found in many species of
insects and frogs. The framework based behavioral pref-
erence on the integral output of linear-nonlinear models.
Starting by fitting this framework to preference data from
two species of crickets (Figs. 1–3), we found that Gabor
filters were surprisingly powerful in reproducing the prin-
cipal shapes of the preference functions for pulse patterns

in many species of insects (Fig. 4). Adjusting the parame-
ters of the Gabor filters allowed us to shift the preference
function in a systematic way. In addition, the integrat-
ing nature of the framework introduced selectivity for the
longer time scale of the chirp, for example by creating
a dependence on the global duty cycle of the song. The
resulting feature space spanned by pulse period and global
duty cycle explained most of the preference in our data
sets (Fig. 5).

4.1 Extensions of the model

Given that the model was relatively simple, it is surpris-
ing how well it was able to explain behavioral preference
in two large data sets (Figs. 3, 5) and a great diversity of
principal preference functions (Fig. 4). Extending the model
to allow for more nonlinear feature detectors and integra-
tion of feature values might further increase the power of
our framework.

First, there has been a great variety of modifications
to the simple one-filter-one-nonlinearity model used as a
feature detector in this study. Extensions to two-filter mod-
els with a full, two-dimensional nonlinearity have allowed
to explain common, nonlinear response properties of sen-
sory neurons like adaptation or sparseness (e.g. Fairhall
et al. 2006; Atencio et al. 2008; Clemens et al. 2012).
Incorporating these computations in the feature detection



J Comput Neurosci (2013) 35:75–85 83

step might allow for a more robust and more nonlinear
feature detection.

Second, we assume that the integral output of the fea-
ture detectors is combined linearly to yield the predicted
behavioral response. However, there are cases where cue
combination is clearly nonlinear, e.g. if the presence of one
feature vetoes the response to a stimulus (Ronacher and
Stumpner 1988). Such interaction could be reproduced by
nonlinear transformations of the feature values (e.g. vi →
v2
i ), by including an interaction term (vi ·vj ), or by a boolean

operations like (vi AND vj ) or (vi XOR vj ).
Note that increasing model complexity comes at the price

of requiring more data when fitting. However, incorporation
of prior knowledge about the system under study could help
reduce the amount of data needed, e.g. through parameter-
izing the filters (see Fig. 4) or the shape of the nonlinearity
(Pillow and Simoncelli 2006).

4.2 Linear-nonlinear models, temporal selectivity
and fusion of time scales

The building block of our framework for song recognition
was the linear-nonlinear model. It served as a feature detec-
tor, the integral output of which was linearly related to
behavioral preference.

Linear filters can be described as having the principal
properties of integration or differentiation. An ideal inte-
grating filter consists of a single lobe and acts as a low-pass
filter on the signal (see Fig. 4f (iv)). Its integral output
corresponds to the global duty cycle of the stimulus. In con-
trast, an ideal differentiating filter has a bimodal structure
and acts as a high-pass filter. As it most strongly responds
to transients in the signal, its integral output reflects the
amount of onsets or offsets in a stimulus. For pulse-like
signals, this corresponds to the pulse rate.

The filters found for the preference data (Fig. 3a) as
well as the Gabor filters (Fig 4) displayed a mixture of
integrating and differentiating properties, and thus often
had band-pass like properties. On the short time scale
of the pulse, this yielded pulse period filters (Figs. 3d
and 4b, b). Extending the duration of the Gabor filter
to span multiple periods (Fig. 4c) resulted in a resonant
preference function known from a species of bush crick-
ets (Bush and Schul 2005; Webb et al. 2007). Changing
the offset of the Gabor filter—thereby rendering it more
integrating—created filters for pulse pause and pulse dura-
tion that were relatively invariant to pulse period (Fig. 4f (i)
and (ii)). Thus, in combining two principal types of filters,
Gabor functions allowed the reproduction of the princi-
pal preference functions found in many insects and also in
frogs (Fig. 4f).

The integration step in our framework added a long time
scale and hence selectivity for aspects of the chirp to the

model. This led to a fusion of the two time scales in the
integral output of the linear-nonlinear models. Depending
on whether the filter was mainly differentiating or integrat-
ing, the number of pulses or the global duty cycle of the
signal was encoded by the feature detectors. Our analysis of
the feature space spanned by these types of filters explained
most aspects of preference for song parameters on the short
and the long time scale (Fig. 5).

4.3 Predictions

The fusion of time scales through the integrating step in the
model has consequences for the role of temporal aspects
of song. Feature values depend both on local properties of
the song—e.g pulse period and duty cycle (Fig. 4b–d)—and
on average signal characteristics over the whole song—e.g.
the global duty cycle (Fig. 5). The short filters used as fea-
ture detectors in the model (Fig. 3a) well matched features
on the time scale of the pulse pattern and could thereby
impose the necessity for a precise song pattern matching the
shape of the filter. Hence, the model could be highly selec-
tive for parameters of the pulse like period or duty cycle
(Fig. 4). In contrast, selectivity for global song parameters
was the outcome of an averaging process and could not
demand a precise pattern on this time scale. Accordingly,
the model was much less selective for the precise struc-
ture on this long time scale—e.g. chirp duration or chirp
pause (Fig. 5).

A surprising consequence of the integration is that the
specific timing of pulse periods within a song is of little
relevance. For instance, the species Teleogryllus oceani-
cus switches between two different pulse periods during a
song. Experiments with artificial songs have tested whether
the precise arrangement of these two pulse periods as
found in natural songs is required by females (Pollack
and Hoy 1979; Hennig and Weber 1997). Interestingly,
females responded well to such shuffled songs as long as
the duration and frequency of occurrence of the two pulse
periods matched that of the natural songs. This is consis-
tent with a model in which the occurrence of each of the
two pulse periods is detected and counted by a dedicated
Gabor filter.

Another corollary of the fusion of time scales by the
integrating step is that female preference can be indepen-
dent of the precise chirp structure. That is, in the absence
of a preference for chirp period, the chirp structure could
serve mainly the purpose of keeping the global duty cycle
within the preference range of the receivers. Consistent with
this hypothesis, there exist species which produce irregu-
lar chirps (Alexander 1957, 1962; Desutter Grandcolas and
Robillard 2003). The fact that chirp structure is regular in
most species could be an epiphenomenon of the oscilla-
tory nature of the central pattern generators underlying song
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production and need not necessarily reflect adaptation to
receiver preference.

The new feature space relies on the fact that the global
duty cycle is a relevant parameter (Fig. 5a–b). That is, pref-
erence did depend on the product of the duty cycle of the
pulse and that of the chirp and not on their individual values.
Then, a long duty cycle on one time scale could be com-
pensated for by a short duty cycle on the other time scale,
as long as the product of the two falls within the preferred
range. For instance a male singing with a short pulse duty
cycle could compensate for that by producing a longer chirp
duty cycle.

4.4 Neural implementation

Our framework provides a phenomenological description of
how the structure of pulse-like patterns determines behavior.
That is, it is agnostic to a specific biophysical implemen-
tation. However, the framework of linear-nonlinear models
makes basic but realistic assumptions about sensory path-
ways. Hence an implementation is conceivable, as the
individual building blocks correspond to canonical compu-
tations which are found in many systems (Carandini and
Heeger 2012). A linear filter well describes the temporal
selectivity of sensory neurons. A threshold and saturation
as implemented by the sigmoidal nonlinearity corresponds
well to the nonlinear properties of the neuronal mem-
brane. Integration of neuronal inputs over long time scales
is known to be implemented through the accumulation of
intracellular calcium or other mechanisms.

The filters themselves, namely their positive and nega-
tive lobes can be constructed with excitatory and inhibitory
synaptic inputs, respectively. The delay between excitation
and inhibition governs the frequency of the modulating
sinusoid and therewith the preferred pulse period (compare
Fig. 4b). The balance between both kinds of inputs deter-
mines the filter’s offset: stronger relative excitation yields
a filter with a positive offset while excess inhibition yields
a negatively offset filter (compare Fig. 4f (i) and (ii)).
A strong influence of inhibition on shaping the temporal
tuning of auditory neurons in the brain of the cricket Gryl-
lus bimaculatus has recently been proposed (Kostarakos
and Hedwig 2012). The long, multi-cyclic Gabor filters
producing resonant phenomena (Fig. 4c) are most likely
implemented either in a recurrent network or at the single-
cell level with resonant conductances (Webb et al. 2007;
Schreiber et al. 2004).

In principle the observed models reflect the overall num-
ber of properties and operations in the auditory pathway of
crickets. Therefore, the calculated preference values likely
correspond to the result of network computations. However,
the small–sized auditory pathway of most insects renders it
feasible that there exist single cells that correspond to the

output of our feature detector(s). Indeed, Kostarakos and
Hedwig (2012) have found an auditory neuron in the brain
of Gryllus bimaculatus, whose integral output was highly
correlated to female preference. Interestingly, its response
pattern resembled the output generated by the Gabor fil-
ter fit to behavioral data (Fig. 3f, red). This suggests that
the Gabor filter in association with a sigmoidal nonlinearity
well describes this cell’s output, which in turn is likely the
result of the network feeding into this cell. Along this line,
Zorovic and Hedwig (2011) have described a cell which
responds to the onset of the chirp, resembling the output
of the second filter for Gryllus bimaculatus in our model
(Fig. 3f, blue).

4.5 Conclusion

Our framework has provided a surprisingly simple compu-
tational principle for many aspects of female preference to
pulse-like songs. Gabor filters well explained preference for
parameters of the pulse while a preference for the chirp
emerged from the integrating step of the model. The model
revealed a direct relation between the parameters of Gabor
filters and the shape of preference functions. Our approach
thus provides a valuable tool that could explain the changes
underlying female preference for communication signals
during speciation events.

These results are likely to generalize to other species
groups as well. Frogs produce similarly structured signals
and preference functions. They may thus implement sim-
ilar algorithms for their evaluation. The songs of birds as
well as the speech of humans is much more complex and
exhibits rich spectro-temporal structure. While the recog-
nition systems is much more parallel and the filters are
more complex, similar principles—feature detection and
integration—might apply here as well.
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