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Optimal coding principles are implemented in many large sensory
systems. They include the systematic transformation of external
stimuli into a sparse and decorrelated neuronal representation,
enabling a flexible readout of stimulus properties. Are these prin-
ciples also applicable to size-constrained systems, which have to
rely on a limited number of neurons and may only have to fulfill
specific and restricted tasks? We studied this question in an insect
system—the early auditory pathway of grasshoppers. Grasshop-
pers use genetically fixed songs to recognize mates. The first steps
of neural processing of songs take place in a small three-layer feed-
forward network comprising only a few dozen neurons. We ana-
lyzed the transformation of the neural code within this network.
Indeed, grasshoppers create a decorrelated and sparse representa-
tion, in accordance with optimal coding theory. Whereas the neu-
ronal input layer is best read out as a summed population, a
labeled-line population code for temporal features of the song is
established after only two processing steps. At this stage, informa-
tion about song identity is maximal for a population decoder that
preserves neuronal identity. We conclude that optimal coding prin-
ciples do apply to the early auditory system of the grasshopper,
despite its size constraints. The inputs, however, are not encoded in
a systematic, map-like fashion as in many larger sensory systems.
Already at its periphery, part of the grasshopper auditory system
seems to focus on behaviorally relevant features, and is in this
property more reminiscent of higher sensory areas in vertebrates.
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To increase their fitness, most animals strive to evaluate sen-
sory signals that reveal the quality of a potential mate. What

if an animal has only a few dozen neurons to preprocess this
extremely important information? Optimal coding theory sug-
gests that the creation of a sparse, decorrelated representation
would be a wise investment of scarce neuronal resources (1).
That is indeed what has been found in many sensory modalities
and species under natural conditions (2–4).
These early sensory networks often comprise large numbers of

cells and organize information in a map-like fashion, where spatial
proximity of neurons reflects similarity in the selectivity for fun-
damental stimulus features (5, 6). These maps tend to have a
complete representation of sensory space and enable subsequent
processing steps to select relevant features based on attention or
associative learning. Reading out such a representation by “blind”
summation of responses across different neurons would be highly
inefficient to recover information, because stimulus features are
not only encoded by neuronal activity per se but also by neuronal
identity. This type of population code is referred to as labeled-line
code (7, 8). Accordingly, higher-order sensory areas need to take
into account which neurons are active when producing more spe-
cific representations of behaviorally relevant stimulus aspects (9).
Do the principles derived by optimal coding theory also apply to

networks with relatively few neurons and a restricted set of relevant
stimuli?Here we investigate this question in the auditory periphery
of grasshoppers. These insects produce genetically fixed songs to
recognize and evaluate potential mates with high fidelity (10). The

involved processing stages comprise a feed-forward network of
only three layers in the grasshopper’s metathoracic ganglion: 60
receptors per side faithfully encode the signal’s envelope (11, 12)
and form the input stage; receptors project onto an intermediate
layer of ∼15 local neurons; these in turn connect to the output
layer of≈20 ascending neurons (13, 14) (Fig. 1). The output of this
size-constrained network is the only source of acoustic in-
formation available to the behavioral decision centers in the brain.
What transformations does the neural representation of

grasshopper song undergo in this small sensory system? Are these
transformations similar to those found in larger sensory systems?
We find that the neural representation changes profoundly ac-
ross neuronal layers: Sparseness and decorrelation of responses
increase—just as in more complex systems and in accord with
optimal coding theory. In the third layer, neuronal identity
becomes crucial for an effective readout of the population. We
show that within just two processing steps a labeled-line code is
formed from a uniform representation of the stimulus at the input
layer. This labeled-line code includes explicit representations of
behaviorally relevant stimulus features at a surprisingly early
stage of the auditory pathway and presumably does not provide
the complete representation of stimulus space found in the pe-
riphery of many larger sensory systems.

Results
We recorded intracellularly from identified, single neurons at
three consecutive stages within the metathoracic ganglion of
migratory locusts. Auditory stimuli consisted of eight songs from
representative male individuals of the species Chorthippus bigut-
tulus, whose auditory system is highly homologous to that of
locusts at the stages considered here (13, 15, 16). Song recogni-
tion in these animals is based on the signal’s envelope. Carrier
frequency is largely irrelevant, as the frequency resolution of the
auditory system is weak (17). The envelope of the grasshopper’s
calling song is composed of several repetitions of a basic subunit:
a syllable-pause pair. We evaluated responses to two syllable-
pause pairs corresponding to the minimal signal duration neces-
sary for song recognition by male grasshoppers (18). Despite their
high homogeneity, these songs are well-discriminated at the level
of auditory receptors (19) and in behavioral tests (20).

Lifetime Sparseness Increases and Reproducibility Decreases Within
the Network. First, we analyzed properties of single-neuron
responses. Example spike trains of different receptors and local
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and ascending neurons show that neuronal response character-
istics changed within the network (Fig. 1). Receptors exhibited
largely persistent firing. In contrast, local and ascending neurons
appeared to respond more transiently with many interleaving
periods of silence. Moreover, reproducibility of responses to the
same stimulus tended to be lower for ascending neurons. To
quantify this observation, we analyzed the lifetime sparseness as
well as the correlation-based reproducibility.
Lifetime sparseness. Lifetime sparseness provides a measure of how
much of a neuron’s response is concentrated in a few, transient
firing events and indicates a cell’s selectivity for temporal features
of the stimulus. It is not to be confounded with population
sparseness, where few neurons are active at any time. Following
the definition of ref. 21, lifetime or temporal sparseness is boun-
ded between 0 (equal firing rate across the whole stimulus) and 1
(all firing concentrated at one point in time). Whereas the average
lifetime sparseness of receptors was low (0.26 ± 0.15, mean ± SD),
local and ascending neurons fired more sparsely (0.52 ± 0.19 and
0.57 ± 0.12, respectively, P < 0.01, rank-sum test; Fig. 2B).
Quantification of temporal sparseness by the kurtosis of the firing-
rate distribution yielded similar results (Fig. S1). Hence, temporal

sparseness of song representation across the network is increased—
a transformation suggested by optimal coding theory (22, 23).
Reproducibility. Local neurons often exhibited transient and tem-
porally precise firing events. Although the ascending neurons
showed a comparable degree of sparseness, their precision was
lower and firing appeared to be more variable across trials. We
quantified the reproducibility of responses by Pearson’s co-
efficient of correlation between pairs of spike trains. Ascending
neurons fired less reproducibly than receptors and local neurons
(receptors 0.66 ± 0.13, local 0.68 ± 0.11, ascending 0.43 ± 0.13;
P < 0.019, rank-sum test; Fig. 2C).
Overall, the neural representation of song was transformed in

this three-layer network: Sparseness of the responses was estab-
lished after just one synapse; reproducibility decreased at the third
stage. This left the ascending neurons—the network’s output layer—
with a sparser yet more noisy representation of the song.

Information in Individual Neurons Is Reduced at the Network’s Output
Layer. The observed loss in response reproducibility may com-
promise stimulus discriminability. On the other hand, increased
sparseness of responses may increase robustness to noise and
improve stimulus discriminability at the level of ascending neu-
rons. To quantify the effect of those opposing trends, we analyzed
the information transfer by decoding stimulus identity from single-
neuron responses (24). Intuitively, stimulus discriminability—and
hence information—is high, if the responses to different stimuli
are less similar than those to repeated representations of the same
stimulus. Our decoding algorithm follows this intuition by basing
the classification of responses on the similarity of spike trains
defined by their Euclidean distance (19, 25).
Although the median information rate was higher in local

neurons than in receptors, this increase could not be confirmed
with high significance (Fig. 2D; receptors 6.7 ± 3.8 bit/s, local
neurons 8.7 ± 3.1 bit/s; P= 0.33, rank-sum test). Interestingly, the
information rate of isolated cells decreased at the level of as-
cending neurons to 3.3 ± 1.9 bit/s (P = 0.019, rank-sum test),
dropping even below that of single receptors (P < 0.044, rank-
sum test). For comparison, we also show the classification success
as quantified by the fraction of correctly classified spike trains
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Fig. 1. The schema at the top depicts the structure of the auditory system of
grasshoppers. Below are responses of different receptors and different types
of local and ascending neurons (three representatives each) to two syllables
of the song of the grasshopper C. biguttulus (top black line). Short black
lines mark the spike times for each of the eight stimulus repetitions; thick
colored lines above each block show trial-averaged firing-rate functions. The
top scale indicates the amplitude and timescale for the song. The lower
vertical scale marks the amplitude for trial-averaged firing-rate functions.
The timescale of firing rates is as in the song.
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Fig. 2. Response characteristics of individual neuron types in all three layers
of the network. (A) Firing rate. (B) Lifetime sparseness. (C) Reproducibility
(Pearson’s coefficient of correlation between firing rates of different trials).
(D) Information rate of single neurons. (E) Information per spike (in-
formation rate normalized by the firing rate of each cell). (F) Percentage of
correctly classified spike trains (the vertical line marks the chance level at
12.5%). n.s., nonsignificant; P < 0.05, *P < 0.05, **P > 0.01, ***P > 0.001.
Blue, receptors (n = 10 cells); red, local neurons (n = 21 cells of five types);
green, ascending neurons (n = 25 cells of seven types).

Clemens et al. PNAS | August 16, 2011 | vol. 108 | no. 33 | 13813

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104506108/-/DCSupplemental/pnas.201104506SI.pdf?targetid=nameddest=SF1


(Fig. 2F; receptors 61 ± 24%, local neurons 76 ± 13%, ascending
neurons 43 ± 15%). This measure of classification success was
highly correlated with information (r2 = 0.97; Fig. S2), but yiel-
ded significant differences only between local and ascending
neurons (P = 0.003; all other pairs P > 0.09, t test).
Remarkably, information about stimulus identity retrievable

from individual neurons is lowest at the output layer of the net-
work. This is partly explained by their comparatively low firing
rate (Fig. 2 A and E).

Ascending Neurons Decorrelate the Neural Representation of Song.
The higher reproducibility of neuronal responses in the first two
layers (receptors and local neurons) would enable the animals to
discriminate individual songs better than the noisy responses of
ascending neurons in the output layer (Fig. 2D) (12, 26). This
may at first glance seem paradoxical. Obviously, the network is
not enhancing the raw stimulus discriminability at the level of
individual neurons. A likely explanation is that the population
code for song undergoes a transformation at the level of as-
cending neurons: Whereas local neurons might constitute a rel-
atively homogeneous population—where every neuron encodes
largely the same information—ascending neurons possibly use a
distributed representation, where different neurons encode dif-
ferent aspects of the stimulus. This might facilitate subsequent
processing steps—at the expense of lower single-cell information
about song discriminability.
A comparison of the firing-rate functions of cells within a layer

suggests that this is indeed true (Fig. 1): Responses to a given
stimulus were diverse across different ascending neurons, where-
as responses among the groups of receptor and local neurons
appeared to be more similar. We quantified the similarity of
responses (same datasets as for the information estimation) by
calculating Pearson’s correlation coefficient between pairs of cells
within each layer. The average response similarity steadily de-
clined within the network from 0.58 ± 0.14 in receptors over
0.42 ± 0.07 in local neurons to 0.09 ± 0.16 in ascending neurons
(Fig. 3A; P < 4.2 × 10−4, rank-sum test). This decorrelation was
accompanied by an increase of population sparseness across the
network layers (Fig. 3B; receptors 0.19 ± 0.04, local neurons
0.35 ± 0.05, ascending neurons 0.47 ± 0.03; P < 5 × 10−7, rank-
sum test). Population sparseness measures to what extent only
a few neurons in a population are active at any time. This is not to
be confused with temporal or lifetime sparseness, which quanti-
fies how sparsely a single neuron fires over time (Fig. 2B). Al-
though the population sparseness of responses does not reach
extreme values as, for example, in the olfactory system of locusts
(e.g., 4, with values >0.9), ascending neurons in the auditory
system can still be considered to form a decorrelated and more
sparse representation of the song (compare with ref. 2).
The decorrelation of responses in the output layer—that is, the

fact that different types of ascending neurons fired at different
times during the stimulus—suggests also that feature selectivity
may be more diverse. To show this directly, we calculated each
neuron’s spike-triggered average (STA) filter—the average stim-
ulus preceding a spike—using the same set of spikes as before.
Neurons at all three layers were previously well-described by
simple linear–nonlinear models (e.g., 11). As the natural songs are
strongly non-Gaussian (11), the STA does not represent an un-
biased estimate of the neuron’s filter (27). However, it allows us to
assess the diversity of feature selectivity at each processing stage.
Fig. 3 D–F shows the filters of different receptors and different

types of local and ascending neurons. Evidently, the variety of
stimulus features eliciting spikes increased across the three
neuronal layers: All receptors and local neurons had almost
identical, unimodal STAs (Fig. 3 D and E, blue and red lines and
Fig. 3C, mean correlation between pairs of filters 0.91 ± 0.08 and
0.81 ± 0.09, respectively) and varied only little around the pop-
ulation average (Fig. 3 D and E). In contrast, the filters of dif-

ferent types of ascending neurons were highly dissimilar: Some
resembled those of the local neurons, whereas others exhibited
strong negative components (Fig. 3F, green lines; correlation
between pairs of filters 0.22 ± 0.55). As the STAs of ascending
neurons were specific to cell type (Fig. S3 and SI Results), we
conclude that different types of ascending neurons encode dif-
ferent aspects of the stimulus.

Ascending Neurons Profit Most from a Multineuron Decoder.What is
the consequence of the observed decorrelation at the network’s
output layer for the population code? In ascending neurons,
information about song discriminability is likely to be distributed
across different cells. As we saw in the analysis of STAs (Fig. 3F),
individual neurons in this layer have a stronger tendency to en-
code different aspects of the stimulus. In this case, blind pooling
(summation) across neurons is likely to destroy valuable in-
formation, whereas knowing which cell fired which spike would
be highly informative for a population readout. Hence, a neuro-
nal representation where not only the occurrence of spikes but
also their neuronal identity matters is formed. Such a code
corresponds to a labeled-line or distributed code (7, 28).
In contrast, we expect neuronal identity to play only a minor

role at the first two processing stages. Here, firing patterns and
STAs within one stage (i.e., among receptors or among local
neurons, respectively) are highly similar (Fig. 3 D and E). Hence,
pooling across neurons might increase information by enhancing
the signal-to-noise ratio (29). We refer to codes where neuronal
identity does not contribute to an optimal readout as summed-
population codes, following refs. 7 and 28.
We tested how these two types of population codes perform for

the decoding of song identity in the three processing layers. To this
end, we implemented two decoders on the basis of the multi-
neuron metric proposed by ref. 28: one which disregards infor-
mation about neuronal identity of spikes by effectively summing
up responses in a population—a “summed-population decoder”—
and one which preserves this information—a “labeled-line de-
coder” (28) (Fig. S4 and SI Materials and Methods). We con-
structed populations of four cells, each consisting of either four
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receptors, or local, or ascending neurons (Materials and Methods).
For each of these populations, we decoded stimulus identity from
responses using both decoders. First, we analyzed how much the
readout of cell populations versus single cells can improve the
discriminability of song. Second, we determined which of the two
population decoders was able to provide more information about
stimulus discriminability in each layer.
Single-cell versus population decoding.Overall, information increased
significantly for populations of receptors and ascending neurons
compared with single cells (P < 7 × 10−4, rank-sum test), but not
for populations of local neurons (P = 0.10, rank-sum test; aver-
age information rate of populations of receptors 13.1 ± 1.2 bit/s,
local neurons 13.0 ± 0.6 bit/s, ascending neurons 7.9 ± 1.6 bit/s).
Evaluation of the performance of the population decoder in
percent correct showed similar trends (receptors 93 ± 5%, local
neurons 94 ± 2%, ascending neurons 72 ± 8%).
Although information increased for populations in all three

processing stages, a true information gain in the population
readout compared with a single-cell readout can only be expected
if the population decoder provides more information than the
best single cell within that population. We hence calculated the
information ratio between the population as decoded by the better
of the two multineuron metrics (determined individually for each
population) and the best individual cell in this population (in Fig.
S5A and SI Results, we provide results for the gain with respect to
the average information rate of individual neurons). Gain values
significantly greater than 1.0 signal a net increase of information
by reading out the population compared with the best single cell.
Gain was intermediate for receptors (Fig. 4A; 1.16 ± 0.11; P <

4 × 10−11, sign test against 1.0) and not significantly different
from 1.0 for local neurons (1.05 ± 0.10; P < 0.38). Presumably,
these two populations show very moderate gains because already
the best single receptors or local neurons exhibited information
rates close to the theoretical maximum of 15 bit/s and discrim-
inated the stimulus almost optimally (Fig. 2D). This leaves little
room for further improvement when considered as a popula-
tion. Ascending neurons profited most from a population read-
out: Here, information in the population increased on average

1.46 ± 0.21-fold compared with information in the best single
cell (P < 6 × 10−11).
Note that the network converges from the receptors to the local

neurons (cell numbers across layers are reduced by a factor of
approximately four). Because no information is lost between these
layers, this processing step could serve to compress the code.
Optimal population decoding. The ratio of the information transfers
obtained from the summed-population versus the labeled-line
readout indicates the disadvantages of ignoring the neuronal
identity of spikes in a population (Fig. 4B and Fig. S5B): If the
ratio is close to 1, then no information is gained by considering
the neuronal identity of spikes; a ratio <1 means that the la-
beled-line decoder yields more information, showing that it is
costly to ignore information about which cell fired which spike.
The distribution for receptors and for local neurons clustered

around a ratio of 1.0—that is, they were read out almost opti-
mally using either decoder. However, there existed small yet
significant trends in both cell groups: Populations of receptors
were read out significantly better as a summed population (me-
dian ratio 1.04; P= 4 × 10−8, sign test against 1.0); populations of
local neurons were decoded significantly better as a labeled line
(median ratio 0.94; P = 2 × 10−6, sign test against 1.0). These
quantitatively weak effects in receptors and local neurons are in
contrast to what we found in ascending neurons: Here, the ratio
was on average 0.69 and hence much smaller than 1.0 (P < 8 ×
10−28, sign test against 1.0). Hence, a large amount of information
in the population would be lost by ignoring the neuronal identity
in populations of ascending neurons. The multineuron decoders
confirm our hypothesis that ascending neurons implement a
labeled-line code, whereas neurons in the first two layers may be
efficiently read out as a summed population.
This result is also in agreement with the observed change in

single-neuron information between layers (Fig. 2D): Single-neuron
information increased from the first to the second layer. Consid-
ering that 60 receptors converge on 15 local neurons, noise is likely
to be reduced at this stage by summation and consequently single-
neuron information is enhanced. In the next step—the transition
from local to ascending neurons—single-neuron information de-
creased. This is consistent with a labeled-line code, as information
about song discriminability is distributed across the population;
hence, information in individual neurons is lower.

Discussion
We asked whether the principles derived by optimal coding
theory in the context of larger neuronal networks also apply to
networks with relatively few neurons and a restricted set of rel-
evant stimuli. Analyzing the representation of natural signals in
the early auditory system of grasshoppers, we find that this small
system performs transformations akin to those found in larger
systems: Both temporal and population sparseness of the neu-
ronal representation increase and responses are decorrelated. A
labeled-line code for temporal features of the grasshopper’s song
is formed within only two processing steps. This code, however,
differs fundamentally from that of larger systems, both in terms of
how it is created as well as in its degree of specialization.

Grasshopper Labeled-Line Code Is Different from That of Larger
Sensory Systems. Usually, labeled-line representations in larger
systems are either obtained by a combination of inputs that were
derived from a labeled line themselves or—at the very periphery—
by neuron-specific tuning of receptor neurons, like location de-
pendence in the retina or frequency selectivity in mammalian
auditory receptor neurons. Preferred stimulus features in these
labeled lines often vary systematically along an anatomical gradi-
ent following a topographic order. Auditory receptor neurons in
grasshoppers, however, are relatively uniform in their selectivity
for temporal features, in agreement with the finding that receptor
neurons are best read out as a summed population. Hence, the
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labeled-line code observed at the third neuronal layer is not ex-
plicitly derived from another labeled-line code, but has to be
established de novo by a transformation of the stimulus repre-
sentation in the first two layers. The construction of this labeled
line from uniformly tuned inputs is presumably achieved by ad-
aptation and a well-timed interplay of excitation and inhibition
(30, 31).
Moreover, the grasshopper labeled-line code is less general.

Whereas labeled-line codes in early sensory systems of higher
animals tend to provide a complete representation of stimulus
space allowing for flexibility of later readout, part of the grass-
hopper labeled line already explicitly encodes stimulus features
of behavioral relevance.
So far, three specific examples of direct extraction of relevant

features by ascending neurons have been described: Recognition
of the “right” male is extremely relevant for female grasshoppers,
as mating with the “wrong” one—in terms of species or quality—
would severely impact a female’s reproductive success. One song
parameter supporting species recognition is the pause length of
the song’s subunits. The ascending neuron AN12 has been found
to encode this song feature in its spike count, thereby allowing the
female grasshopper to recognize the species of the male by its
song (16). Another aspect of a male, which is indicative of high
quality, is the ability to avoid predators. A frequent consequence
of a previous encounter with predators is the loss of a hind leg. As
males produce their calling song by rubbing both hind legs over
their wings, a “one-legged”male will produce a distorted song with
tiny gaps in the song’s syllable. The ascending neuron AN4 is
strongly inhibited by songs exhibiting such gaps. A strong cotuning
between the firing rate of AN4 and the behavioral response has
been shown before (31), indicating that this neuron explicitly
encodes a male’s quality. A third song parameter strongly influ-
encing female choice is the onset slope of the song’s subunits. The
spike count of the ascending neuron AN3 is strongly modulated by
the onset slope of the pulses, rendering it a potential encoder of
this feature (32). Thus, properties of the song that strongly in-
fluence behavior (pauses between syllables, gaps within syllables,
and syllable onset steepness, respectively) are encoded explicitly in
the spike count of ascending neurons AN12, AN4, and AN3.
Such an early specialization at the auditory periphery seems

efficient, as the number of available neurons as well as the set of
relevant stimuli are restricted. Usually, complete representations
are found in systems comprising many neurons, where also the
range of potentially relevant stimuli is large and relevance is
often acquired through attention or learning (2, 4, 22, 33, 34).
The auditory system of grasshoppers, however, has to discrimi-
nate only a restricted set of genetically fixed signals.
Interestingly, the structure of the auditory network seems to

be older than that of many songs it processes (15). It might thus
be optimal for the songs but it is certainly not optimized for them.
The fact that we find behaviorally relevant information repre-
sented explicitly in the network is likely to be a consequence of
evolutionary adaptation of the songs to the network and not vice
versa (15, 23, 35).

Trading “What” for “When” Facilitates the Readout of Long Commu-
nication Signals. The peripheral auditory system of the grasshop-
per seems to fulfill two functions of optimal coding: signal com-
pression and facilitated readout (1, 22). Compression is observed
from the first to the second neuronal layer, where neuronal
numbers converge by a factor of four and information rates per
neuron increase. Facilitated readout is established at the neuronal
output layer, as outlined in the following.
Receptors and local neurons encode temporal features of the

song in the temporal structure of their spiking responses. They
have to use a temporally precise and reproducible spike code to
represent fine temporal features of a song (12, 36), even pre-
serving information about when a temporal feature occurred

during a song syllable. In the recoded labeled-line representation
of ascending neurons, however, the presence of a highly specific
feature can be represented by the spike count across a whole
syllable, alleviating the need for temporally precise responses at
the cost of reduced information about a feature’s exact timing
within a syllable. In that sense, the system trades the when of
temporal features for an easily decodable spike-count represen-
tation of their what. The observation that ascending neurons are
best read out at larger timescales than local neurons is consistent
with this hypothesis (26) (Fig. S6 and SI Materials and Methods).
Behavioral experiments suggest that the grasshopper’s brain in-
deed often evaluates spike count and makes little use of spike
timing (37, 38). In addition, the songs exhibit a high temporal
redundancy: Each song consists of 10–30 syllables, allowing for
multiple “looks” at the basic subunit (39). The signal’s temporal
redundancy presumably compensates for the restricted options of
neuronal redundancy in this size-limited system and agrees well
with a spike-count code that enables the system to increase the
signal-to-noise ratio by accumulation of spikes across syllables.

Conclusion
Despite its limited size, the auditory system of the grasshopper
shares properties of larger sensory systems: a sparse and decor-
related representation of inputs including a labeled-line pop-
ulation code. In contrast to larger systems, however, part of the
auditory pathway seems to specialize early on for specific be-
haviorally relevant stimulus features. This representation is more
reminiscent of higher-order areas in vertebrates. It is likely to
restrict the set of stimuli that can be differentiated and hence to
lower the flexibility of behavioral responses. In addition, in-
formation about precise timing of an event seems to be sacrificed
for a pure detection of this event within a larger temporal win-
dow. In the context of mate selection, where signals have evolved
to be sufficiently long and redundant, this may be a price worth
paying and may help to invest the limited available resources
specifically in the extraction of relevant information.

Materials and Methods
Recordings and Stimuli. We performed single-unit intracellular recordings
frommorphologically identified neurons at the three processing stages in the
metathoracic ganglion of migratory locusts: receptors and local and as-
cending neurons. Each individual animal possesses the same set of roughly 35
unique and morphologically and physiologically identifiable types of local
and ascending neurons. Cell types were identified morphologically by in-
tracellularly injecting a fluorescent dye (Lucifer yellow). We have recorded
from eight receptor neurons, five different types of local neurons (spanning
the whole range of response types: TN1, BSN1, SN1, SN2, SN3), and seven
different types of ascending neurons (AN1, AN2, AN3, AN4, AN11, AN12,
AN14)—most of them several times (range 1–10, median frequency 3). Each
recording comes from a different animal. For details on the recording pro-
cedure and stimulus presentation, refer to ref. 26.

Neurons were stimulated with eight different calling songs of male
grasshoppers of the species C. biguttulus used previously (19). As song pe-
riodicity (duration of syllable plus pause) depends on temperature in these
poikilothermic animals (10, 16), we rescaled our stimuli to a period of 100 ms
and equalized the carrier spectra (19). This leaves the stimuli differing only in
their envelope’s fine structure and probes the system at its limits of temporal
resolution. Note that we study responses of neurons of one species of acridid
grasshoppers—Locusta migratoria—to courtship signals of another species—
C. biguttulus. This is well-justified, as auditory neurons in the early stages of
sensory processing are morphologically and physiologically highly similar
(15, 16, 31).

Estimation of Response Similarity, Reproducibility, and Sparseness. Time-
varying firing-rate functions were estimated by binning spike trains at 0.05-
ms resolution and smoothing them with a Gaussian filter of width σ = 5 ms.
All results obtained were robust to changes of this filter’s width.

Response similarity (cell-to-cell correlations) and reproducibility (trial-to-
trial correlations) were quantified as Pearson’s correlation coefficient. For
response similarity, we used trial-averaged rate functions of cell pairs for
each stimulus. Reproducibility was based on pairs of single-trial responses to
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repeated representations of the same stimulus. Using the uncentered cor-
relation coefficient as a measure of reproducibility gave similar results (40).
Lifetime sparseness of single neurons at each processing stage was quanti-
fied from their trial-averaged firing-rate profiles using the quantity de-
scribed in ref. 21. Population sparseness was quantified from the trial-
averaged firing-rate profiles by calculating the measure in ref. 21 across the
four cells in each population for every time bin and averaging over time.
Each measure was averaged over all eight songs for plotting and statistics.
So as to not bias statistics in favor of cell types we recorded more often, we
additionally averaged values over all specimens of a given cell type.

Spike-Triggered Averages.We estimated STA stimuli using the same responses
as those used for decoding. To correct for different firing rates, we scaled all

STAs to unit norm. Individual STAs were averaged over specimens of the same
cell type. We derived estimation errors by subsampling (10 repetitions using
random subsets of 80% of the spikes). Estimation errors of the normalized
STAs of neurons in all three layers did not differ significantly (mean ± SEM
9.2 × 10−3, P = 0.31, one-way ANOVA).

Decoding. Song identity was decoded from neural responses using the single-
neuron metric (19, 25). Populations of cells were decoded with the multi-
neuron metric (28). For details on the metrics, see SI Materials and Methods.
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SI Results
Specificity of Spike-Triggered Averages. In Fig. 3 in the main text,
we showed that spike-triggered averages (STAs)—and hence the
feature selectivity—become more diverse at the level of as-
cending neurons. The decoding approach (Fig. 4 in the main
text) led us to conclude that ascending neurons are optimally
read out as a labeled line, indicating that each ascending neuron
signals a specific aspect of the stimulus.
The second and third processing layers each consist of several

cell types. To further support our findings, we also looked at the
similarity of each cell type’s STA across different individuals/re-
cordings by computing Pearson’s correlation coefficient between
the average STA of a cell type and the STA of each individual
cell of that type. In order for the STA (feature) to be specific for
the cell type, this “intratype” similarity should be larger than the
similarity across different cell types of that layer (“intertype”
similarity).
As we considered each receptor a different type, inter- and

intratype similarities for receptors are identical (Fig. S3, blue box
plots). For local neurons (Fig. S3, red box plots), both the STAs
of the same cell type and of different cell types are highly similar
(intratype similarity 0.95 ± 0.04, mean ± SD; intertype similarity
0.81 ± 0.10). Whereas individual STAs of the same type are
significantly more similar than those of different types (P =
0.019, rank-sum test), overall similarity at the level of local
neurons is high. In ascending neurons, however, STAs of the
same cell type are much more similar than those of different
types (intratype similarity 0.85 ± 0.17, intertype similarity 0.22 ±
0.55; P= 0.002, rank-sum test). This cell specificity of STA filters
further supports our hypothesis that each type of ascending
neuron encodes a specific aspect of the stimulus.

Information Gain Relative to the Population Average. In the main
text, we quantified the information gain by relating the in-
formation of a four-cell population (the larger value of those
obtained with the summed-population and the labeled-line de-
coder) with that of the best cell in that population. Alternatively,
we also considered the gain with respect to the average in-
formation of all four cells comprising that population (Fig. S5A).
Clearly, this measure of information gain yields higher values:
Receptors exhibit an average gain of 1.99, local neurons 1.49,
and ascending neurons 2.49. Thus, the gain relative to the av-
erage information in the population is 1.4- to 1.7-fold greater
than the gain relative to the best cell. This is due to an upward
bias in this alternative measure: The more cells one includes in
a population, the more likely it is to “hit” a highly informative
one. The receptors with their high spread of single-neuron in-
formation values (Fig. 2D in the main text) are especially sus-
ceptible to this bias. We hence decided to quantify information
gain relative to the best cell in each population as a more con-
servative and less biased measure.

SI Materials and Methods
Decoding. We quantified information in neural responses using
a decoding approach (1). Although we thereby underestimate the
full information in the statistical sense, we probably come closer
to what a concrete, biologically plausible system can read out
from the spike trains we study here.
Single-neuron metric. The spike-train dissimilarity of single neurons
was quantified using the van Rossum metric (2). Spike trains were
binned with a resolution of 0.05 ms and filtered with an α func-
tion: α(t) = Θ(t) t exp(− t/τ), where Θ(t) is Heaviside’s function.

The parameter τ governs the temporal resolution of the metric.
The Euclidean distance between all pairs of responses (eight
repetitions of eight song segments of different males, duration
200 ms each) yields a distance matrix that forms the base for the
classification algorithm outlined below.
Multineuronmetric.Population data were combined from single-cell
recordings of four individual cells. This was justified, as neural
activity in the network is entirely stimulus-driven. Hence, neurons
are conditionally independent: There are no “noise” correlations
between neurons, only signal correlations (3). Because we were
interested in how the population code changed between pro-
cessing stages, we created three different classes of four-cell
populations, combining different types of either receptors or
local or ascending neurons. Thus, each population was charac-
terized by a unique combination of four different cell types of
a single layer. So as not to overrepresent those populations that
consist of cell types we have recorded more often, we averaged
information rates and gains for each kind of population (i.e.,
combination of cell types) for plotting and statistics.
For a formal derivation of the multineuron metric, see ref. 4.

Application of this metric amounts to filtering the spike trains
with an α function, embedding the spike trains from multiple
cells into a vector space, and then taking the Euclidean distance
between different spike trains. The resulting distance matrix for
each population is then used to quantify stimulus discriminability
through the classification algorithm. Thus, the only difference
from the single-cell metric is that the spike trains of the cells
comprising a population are embedded in a vector space.
Themultineuronmetric allows for different kinds of embedding,

which is controlled by the “independence” parameter θ—the
“angle between cells.” This parameter allows interpolating be-
tween two versions of a population code: a summed-population
code and a labeled-line code. At θ= 0°, the metric corresponds to
a summed-population code, where responses of different cells are
embedded colinearly. Information about which cell fired which
spike is lost. This is optimal only if differences in the firing pattern
between cells in a population are not relevant for the decoding
tasks or if cells in a population are similarly tuned—this applies in
our case to receptors and local neurons. In contrast, information
about each spike’s origin is fully retained in a labeled-line code,
which is implemented at θ = 90° (orthogonal embedding). This is
desirable, if cells are tuned differently and represent different
aspects of a stimulus, like the ascending neurons.
To illustrate that the labeled-line decoder incorporates in-

formation about which neuron fired which spikes—the neuronal
identity of spikes—we provide a simplified example of how three
different stimuli can be distinguished with the summed-population
and the label-line decoder, respectively, based on surrogate re-
sponses from two neurons. Fig. S4A shows the surrogate spike
trains of both cells in response to the three different stimuli. To
simplify the argument and without loss of generality, we reduce
these spike trains to spike counts, which corresponds to applying
a filter with a large time constant τ. In response to stimulus 1, cell
A (green) and cell B (blue) fire three spikes each. Stimulus 2
evokes one spike in cell A and five spikes in cell B. The response
pattern for stimulus 3 is inverted: Now cell A fires five spikes and
cell B only one.
The summed-population decoder sums these spike counts

before computing pairwise distances between all stimuli. As the
sum of spikes in cell A and cell B is the same, the population
response to all three stimuli is represented by a 6; they cannot be
distinguished. In contrast, the labeled-line decoder does not pool
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the response of the two cells in the population. Here each re-
sponse is represented by an ordered pair of spike counts, which is
different for each stimulus. This is also reflected in the resulting
distance matrices (Fig. S4B). As the summed-population spike
counts are the same for all three stimuli, the distance matrix has
all zero entries and the summed-population decoder cannot
discriminate between the three stimuli (information 0 bit). The
labeled-line decoder, however, discriminates all three stimuli, as
all off-diagonal entries in the distance matrix exhibit nonzero
entries (information log23 = 1.6 bit). The labeled-line decoder
can distinguish stimulus 1 from both stimuli 2 and 3. In partic-
ular, it can also disambiguate stimuli 2 and 3, which differ only in
neuronal identity of responses (both stimuli evoke one spike in
one cell and five in the other, but in a different order). This or-
dering is the major difference for the summed-population de-
coder, and reflects the role of neuronal identity for the labeled-
line decoder.
Classifier. Responses were classified using a nearest-neighbor
clustering algorithm as in ref. 5. Nearness was given by the single
or multineuron metrics. We randomly selected one template
spike train from each of the eight songs. The remaining spike
trains were then classified as being evoked by the song to which
the nearest template belonged. This was repeated many times,
always with a new, randomly selected set of templates. We or-
ganized the classification results in a confusion matrix H(s,s′),
which shows the frequency with which a spike train being evoked
by song s was classified as being evoked by song s′. The average of
this matrix’s main diagonal denotes the fraction of correctly
decoded spike trains.
Estimation of information. The mutual information of this confusion
matrix I(s,s′) was used as a proxy for the information content of
the neural responses I(s,r) (1). Information is given by Iðs; rÞ
∝ Iðs; s′Þ ¼ ∑

s;s′
pðs; s′Þlog2

pðs; s′Þ
pðsÞpðs′Þ, where p(s,s′) is the entry in

the confusion matrix, pðsÞ ¼ ∑s′pðs; s′Þ ¼ 1=8 is the prior stim-
ulus probability, and pðs′Þ ¼ ∑s pðs; s′Þ is the marginal over the
decoded stimuli (6). Mutual information is 0 bit when the con-
fusion matrix is uniformly distributed, that is, when each entry has
the value 1/64. It is maximal [for eight stimuli log2(8) = 3 bit]
when there is a one-to-one relationship between spike trains and
classes, for example, when all entries are concentrated at the
matrix’s diagonal. As this measure is upwardly biased, we calcu-

lated the same quantity 10 times for random assignments between
responses and stimulus classes and subtracted this bias from the
naive estimator I(s,s′) (7). We expressed information either as
a rate in bit/s by dividing the information by the stimulus length
(maximal information rate being thereby 8/0.2 s = 15 bit/s) or as
information per spike (bit per spike) by normalizing the in-
formation rate by the cell’s firing rate. Firing rate was quantified
as the spike count divided by the length of the spike train segment
(200 ms).
Optimization of the metric’s parameters. Classification performance is
a function of the metric’s temporal resolution τ. We optimized
information with a grid search for τ ranging from 0.25 to 64 ms
(nine values, spaced linearly on a logarithmic scale). The τ used
for decoding are shown in Fig. S6. Receptors exhibited an in-
termediate range of τ between 4 and 8 ms with two outliers at 16
and 32 ms. The τ of local neurons were significantly smaller (P =
0.01), spanning a range of 3–4.2 ms. Ascending neurons had the
highest τ between 6.7 and 42 ms, being significantly greater than
those of local neurons (P= 0.003). For population decoding with
the multineuron metric, we used a single optimal τ for all cells in
a population.
In the main text, we consider only the information rates

obtained for two “extreme-value decoders” at θ = 0° (summed-
population) and at θ = 90° (labeled-line) for each population.
We have also determined information at the optimal θ for each
population by a grid search in the interval [0°, 90°]. As either of
the two decoders at 0° or 90° yielded near-optimal performance
for any population (median information loss 2%), we decided to
consider only those two for all analyses.

Statistics.All plots and statistics were based on average values for
each cell type or type of population, that is, over all recordings of a
cell type for the analysis of single cells and over unique, unordered
4-tuples for populations of cells. Tests—if not stated otherwise—
were either parametric (t test) or nonparametric (two-sided
Wilcoxon’s rank-sum test), depending on the outcome of a Jarque–
Bera test for normality with a significance level α = 0.05. No
correction for multiple comparisons was performed to avoid false
negatives, as we were interested in the outcome of each individual
pairwise comparison, not in the general detection of statistical
differences between groups.
All analysis was done in MATLAB (The MathWorks).
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Fig. S3. Cell-type specificity of STA filters. Shown is the similarity of the STA filters of different specimens of the same cell type (intratype) and the similarity of
the STA filters of different cell types (intertype; same as Fig. 3C in the main text). n.s., nonsignificant. P > 0.05, *P < 0.05, **P < 0.01, rank-sum test.
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Fig. S4. Illustration of the summed-population and the labeled-line decoder. (A) Artificially generated responses of two cells (A and B) to three arbitrary
stimuli (Left). (Right) A representation of the spike counts by the summed-population and labeled-line decoder is shown. (B) Resulting distance matrices and
information values.
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Fig. S5. Information of the population decoder. (A) Information gain of the population with respect to the average information obtained by decoding them
individually. Receptors 2.0 ± 0.2, local neurons 1.5 ± 0.1, ascending neurons 2.5 ± 0.2; all P < 6 × 10−7, rank-sum test. Horizontal line at 1.0 indicates no gain.
***P < 0.001, rank-sum test. (B) Information of the summed-population versus that of the labeled-line decoder. Results for decoder performance in terms of %
correct look similar (Inset in Fig. 4B in the main text). Blue, receptors (n = 100 four-cell populations); red, local neurons (n = 160 four-cell populations, 5 different
combinations of cell types); green, ascending neurons (n = 910 four-cell populations, 35 different combinations of cell types).
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Fig. S6. Optimal timescales for decoding. Box plots show the τs that maximized the mutual information for each cell type. These determine the width of the α
functions with which spike trains were convolved in the decoding procedure and indicate the timescale at which the decoder operated.
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