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Abstract The temporal pattern of amplitude modulations

(AM) is often used to recognize acoustic objects. To identify

objects reliably, intensity invariant representations have to

be formed. We approached this problem within the auditory

pathway of grasshoppers. We presented AM patterns mod-

ulated at different time scales and intensities. Metric space

analysis of neuronal responses allowed us to determine how

well, how invariantly, and at which time scales AM

frequency is encoded. We find that in some neurons spike-

count cues contribute substantially (20–60%) to the decod-

ing of AM frequency at a single intensity. However, such

cues are not robust when intensity varies. The general

intensity invariance of the system is poor. However, there

exists a range of AM frequencies around 83 Hz where

intensity invariance of local interneurons is relatively high.

In this range, natural communication signals exhibit much

variation between species, suggesting an important beha-

vioral role for this frequency band. We hypothesize, just as

has been proposed for human speech, that the communica-

tion signals might have evolved to match the processing

properties of the receivers. This contrasts with optimal

coding theory, which postulates that neuronal systems are

adapted to the statistics of the relevant signals.

Keywords Spike-train metric � Decoding �
Acoustic communication � Optimal coding � Evolution

Introduction

All communication systems face the problem that signals

must be interpreted correctly in a broad range of intensities.

This robustness can be attained by employing two, not

mutually exclusive, strategies depending on whether the

signal processing hardware or the signals themselves

exhibit more evolutionary plasticity. On the one hand, the

receiver’s signal processing hardware can adapt to the

statistics of relevant signals, such that successive stages of

feature extraction operate on a representation which has

‘‘corrected’’ for most intensity induced changes in the

signal (e.g., Chander and Chichilnisky 2001; Benda and

Hennig 2008). On the other hand, in the evolution of

communication systems the signals themselves can adapt

to rely on features, which are per se less intensity depen-

dent or which exploit some invariance properties of exist-

ing neuronal networks (e.g., Guilford and Dawkins 1993;

Ryan et al. 2001; Arnqvist 2006).

This problem is of special relevance for grasshoppers,

which use acoustic communication signals to identify,

evaluate, and locate their mates. Signal recognition

depends on the signal’s temporal pattern of amplitude

modulations (AM). Signals in a broad intensity range

between 40 and 80 dB SPL are accepted (von Helversen

and von Helversen 1997), underlining the need for intensity

invariant processing of sound patterns. The peripheral

auditory system of grasshoppers is a feed-forward network.

It is therefore ideally suited to track the transformation of

information and possible changes in coding along consecu-

tive processing stages (Vogel et al. 2005; Vogel and

Ronacher 2007). Basic properties of this system have been

investigated by stimulating with sinusoidal AM patterns

and constructing modulation transfer functions (Wohlge-

muth and Ronacher 2007; Weschke and Ronacher 2008),

J. Clemens (&) � G. Weschke � A. Vogel � B. Ronacher

Abteilung Verhaltensphysiologie,

Institut für Biologie der Humboldt-Universität zu Berlin,

Invalidenstr. 43, 10999 Berlin, Germany

e-mail: clemensjan@googlemail.com

J. Clemens � B. Ronacher

Bernstein Center for Computational Neuroscience Berlin,

Philippstrasse 13, 10115 Berlin, Germany

123

J Comp Physiol A (2010) 196:285–297

DOI 10.1007/s00359-010-0515-7



as well as with natural communication signals and song

models (Stumpner and Ronacher 1991; Stumpner et al.

1991; Machens et al. 2003; Neuhofer et al. 2008). In this

study, we present a combined analysis of neuronal intensity

invariance and of the statistics of behaviorally relevant

signals to collect cues as to how the problem of intensity

invariance might have been solved by grasshoppers. The

hypothesis formulated thus possibly applies to animal

communication systems in general.

How can one quantify neuronal intensity invariance? The

only source of information an animal has in order to infer

stimulus ‘‘identity’’ is neuronal spike trains. We mimic this

by decoding stimulus identity, that is the AM pattern

imposed by a sinusoidal modulation, from single-cell spike

responses recorded from auditory neurons. If decoder per-

formance is robust to changes of stimulus intensity, then we

consider the neuronal response intensity invariant given this

decoder. Extensive behavioral experiments have shown that

the computations grasshoppers perform on the stimulus rely

on the temporal pattern of amplitude modulations of stimuli,

not on signal periodicity (von Helversen and von Helversen

1998; Schmidt et al. 2008). The decoder employed here is

based on a spike distance metric after van Rossum (2001)

and incorporates this knowledge. The metric allows us to

probe and to interpolate between two of the most widely

hypothesized neural codes: a spike-timing code, where the

pattern of spike times is available for the decoding of

stimulus identity; and a spike-count code, where only the

number of spikes over a long time window is available.

There is evidence that a spike-timing as well as a spike-count

code are employed at different stages in the auditory path-

way of grasshoppers (Machens et al. 2001; Creutzig et al.

2009; Stumpner and Ronacher 1994).

Methods

Animals, electrophysiology, and acoustic stimulation

The animals used in the experiments were adult locusts

(Locusta migratoria) of both sexes, which were obtained

from a local supplier and held at room temperature (22–

25�C). Intracellular electrophysiological recording meth-

ods are described in detail in Vogel et al. (2005) and

Weschke and Ronacher (2008). After completion of the

stimulation protocol, we stained neurons with Lucifer

Yellow and identified them by their characteristic mor-

phology (Römer and Marquart 1984). We present data

from the three consecutive levels of processing, located in

the thoracic ganglia, which constitute an important stage of

auditory information processing (Stumpner and Ronacher

1994). Information from the population of auditory

receptors enters into a network of local interneurons, which

in turn connects to a set of ascending interneurons. These

forward the information to decision centers in the brain.

Different cell types were pooled into four classes based on

abundance in the data set and assignment to processing

stages. Auditory receptors comprise the first class (N = 6).

Local interneurons were divided into two classes: T-shaped

neuron TN1 and the segmental neuron SN1 (N = 16)

comprise a class of primary-like interneurons, whereas the

bi-segmental neuron BSN1 forms a class with more derived

response properties (N = 7). Ascending interneurons

(fourth class, N = 11) are an inhomogeneous group with

respect to physiological properties but were pooled into

one class due to their position at the output stage of the

thoracic network to the brain. Representatives included are

AN1, AN2, AN3, AN4, AN11 and AN12 (terminology

after Römer and Marquart 1984).

Note, that the same neuron types are found in other

acridid grasshoppers, and exhibit not only compelling

morphological similarities, but also share their physiologi-

cal characteristics (Römer et al. 1988; Ronacher and

Stumpner 1988; Stumpner and Ronacher 1991; Stumpner

et al. 1991). A recent study has demonstrated a strong

evolutionary conservation of coding properties of identified

thoracic auditory neurons between the locust used in this

study (Locusta migratoria) and a gomphocerine grasshop-

per, Chorthippus biguttulus (Neuhofer et al. 2008; see also

Ronacher and Stumpner 1988). This close correspondence

in processing characteristics between these species allows

us to relate the neuronal data presented here to acoustic

signal characteristics and behavioral performance in other

grasshopper species.

As stimuli we used broadband noise that was sinusoidally

amplitude modulated (SAM, modulation depth 100%) in a

broad frequency range (10 stimuli, 5–1,000 Hz, logarithmic

spacing, see Weschke and Ronacher 2008). The rationale for

this choice was the observation that in many grasshopper

species the temporal structure of the signal envelope is

crucial for signal recognition (von Helversen and von

Helversen 1997; von Helversen and von Helversen 1998;

Schmidt et al. 2008). In order to investigate how changes in

intensity affect the neural responses, we stimulated the

neurons with SAM stimuli at 2–3 different intensities.

Intensity was defined by dB SPL peak. As the neurons

considered here vary widely in their dynamic ranges, we

adjusted the peak intensities such that they covered com-

parable parts within the dynamic range of each neuron. This

was done by determining the rate-level curve for each neu-

ron from responses to a 100 ms constant-amplitude broad-

band noise (see Fig. 1a for an example). The first (lowest)

intensity at which we presented the SAM stimuli was set to

lie at the middle of the first rising part of the cell’s rate-level

curve. The second intensity was set to lie at the end of the

first rising part of the rate-level curve, shortly before
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saturation. Thus, we assessed the cell’s coding properties

when it was driven either moderately or strongly. If possible,

an additional intensity was placed either halfway between

the two other intensities or further into the saturating part of

the rate-level curve. For cells exhibiting more complex or

optimum-like intensity tuning, we probed coding properties

for the first rising part only. Additionally, we assured that the

stimuli were spaced approximately evenly along the inten-

sity axis. Note, that the above protocol changes both stimu-

lus mean intensity as well as stimulus variance.

Data analysis

General classification algorithm

We applied a classification algorithm based on the spike-

train metric after van Rossum (2001). The algorithm

assesses how well stimuli can be discriminated from the

neuronal responses, and allows us to quantify the infor-

mation about AM frequency contained in a neuronal

response via the classification performance (Machens et al.

2003). Spike trains were convolved with an a function:

a(t) = H(t)t exp(-at), where H(t) is Heaviside’s function.

The parameter s = 2.54/a represents the temporal resolu-

tion, as measured by the function’s width at half maximum,

with which spike trains are read out (Machens et al. 2003).

The Euclidean distance between two convolved spike

trains is a measure of spike-train dissimilarity. Repeating

this procedure for all pairs of spike trains yields a distance

matrix whose structure depends on the spike trains them-

selves and the temporal resolution parameter s. Based on

the distance matrix, spike trains were then classified

according to the stimulus’ AM frequency by a supervised

nearest-neighbor cluster algorithm as in Machens et al.

(2003). The algorithm itself operates as follows: out of

each stimulus class, one spike train was chosen randomly

as a template. Each remaining non-template spike train was

assigned to the class, which the nearest template was in.

Repeating this to cover all possible combinations of tem-

plates, and counting the frequency with which a spike train

from a given class was assigned to any class resulted in a

confusion matrix: rows correspond to the presented stimu-

lus class, columns to the decoded stimulus class. The

values at the confusion matrix’ main diagonal indicate

correctly and off-diagonal values falsely classified (‘‘con-

fused’’) spike trains (Fig. 2a–c). Frequency-resolved clas-

sification performance was derived from the values at the

confusion matrix’ main diagonal. Overall classification

performance was taken as the fraction of correctly classi-

fied spike trains (the main diagonal’s mean). Chance level

is 0.1 (one over the number of AM frequencies).

Classification performance depends crucially on the

choice of the temporal resolution s at which spike trains are

evaluated. Hence, by varying s we gain insight into the

time scale(s) at which information about AM patterns

resides: small to intermediary s correspond to a spike-

timing code, very large s ([500 ms) correspond to a spike-

count code. We tested a broad range of s values ranging

from 0.6 to 1,800 ms spaced evenly on a logarithmic scale.

All performance values are taken at the optimal s for each

cell and task. However, the s curves usually exhibited

rather broad peaks, and, hence, performance did depend

only little on the exact s value (see Fig. 5a). Furthermore,

optimal s changed only little with the specific task.

Quantifying invariance through decoding

We aimed at quantifying the intensity invariance of the

neuronal representation of AM frequency by applying the

algorithm outlined above. Our notion of intensity invari-

ance implies that a neuron should retain the features of its

response necessary for the decoding of AM frequency

under changes of stimulus intensity.

A procedure to quantify intensity invariance would then

be to train a decoder at a certain intensity, validate it at that

training intensity (‘‘self-validation’’) and at other intensities

b ca

Fig. 1 a Rate-level curve for a local interneuron (TN1) measured

with rectangularly modulated 100 ms noise pulses. Peak intensity of

the SAM stimuli used to quantify intensity invariance was chosen

such that the cell was either moderately (75 dB) or strongly (90 dB)

driven (grey lines). Plotted is the mean firing rate. Error bars indicate

standard deviation. b and c Responses of a local interneuron (TN1) to

a subset of the AM frequencies presented at two different intensities:

one intensity, which lies at *50% (b, 75 dB) and one, which lies at

*100% (c, 90 dB) of the cell’s dynamic range 129 9 39 mm

(600 9 600 DPI)
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(‘‘cross-validation’’). The comparison of the performance

obtained in the self-validation and in the cross-validation

task yields a measure of intensity invariance: a fully invariant

neuron would exhibit no decrease of performance in the

cross-validation, leading to a performance ratio of 1. A

neuron whose responses change such that different response

aspects underlie decoding at different intensities would

exhibit a large decrease in performance and hence a ratio

�1. By this, intensity invariance is not only a property of the

neuron under study but also of the decoding scheme

employed.

Applied to a distance-based decoder, we required the

responses to a given AM frequency to be nearer to each

other than to other AM frequencies, irrespective of inten-

sity. We did this first by classifying AM frequency using

templates from the same intensity as the target responses.

This self-validation served to quantify base-line perfor-

mance of the cell. Second, we classified AM frequency

with templates obtained by stimulation with intensities

different from those of the target responses. By this cross-

validation, we evaluated performance when the same pat-

tern was present at varying intensities, a task the animal

faces in its natural environment.

Self-validation

To quantify classification in the self-validation task, we

classified frequency for each intensity presented separately

such that both template and target responses came from the

same intensity. This produced confusion matrices (Fig. 2a,

b), reflecting the outcome of the algorithm for each inten-

sity. Self-validated performance of frequency classification

was then taken as the mean performance over all intensities

and frequencies. We chose the same s for all intensities such

that the mean performance over all intensities was maximal.

Note that ‘‘self-validation’’ does not imply that we use the

same data for training as for validating. Rather, ‘‘self’’

relates to intensity being the same in the training and the

validation data.

Cross-validation

We applied a cross-validation procedure to estimate

invariance. Using the responses from all intensities, we

quantified how well the responses to an AM frequency at a

certain intensity allowed to classify the AM frequency at

other intensities (Fig. 2c). That is, we modified the cluster-

ing algorithm to exclude not only the template response from

the set of spike trains to be classified. Rather, we excluded all

responses to an AM frequency, which had the same intensity

as the template response for that AM frequency. By this, we

ensured that template and target responses always came

from different intensities. We then calculated intensity

invariance by taking the ratio of the performance obtained

by cross-validation and by self-validation. A cell with near-

chance performance in both tasks could score falsely

invariant. To avoid this, we excluded all cells, which did not

exhibit more than twice the chance level performance (i.e.,

more than 0.2) in the self-validation task from the analysis.

Frequency-resolved intensity invariance

The intensity invariance taken as the ratio of the mean

performance in the self- and cross-validation tasks over all

da b c

Fig. 2 Exemplary data analysis for a local interneuron: a and b
confusion matrices for the self-validation task at both intensities. AM

frequency is decoded for the set of responses of the same TN1 as in

Fig. 1 at 75 and 90 dB separately. The outcome of the decoding

algorithm is presented in a confusion matrix. The grey value

corresponds to the probability with which a presentation of a given

AM frequency y is decoded as AM frequency x (for color legend see

3a). A perfect classification would lead to all entries being concen-

trated along the main diagonal. c Confusion matrix for the cross-

validation task, when AM frequency is decoded across intensities (see

‘‘Methods’’ for details). d Classification performance as a function of

AM frequency for the three confusion matrices in a, b, c: AM

classification performance at 75 and 90 dB (dash-dotted and dashed
grey lines) differ only slightly in their average performance and in

their frequency dependence. The mean of both curves over intensities

(grey) is a measure of how well each AM frequency is decoded on

average. Cross-validation performance (black line) is lower in general

and exhibits a more band-pass like frequency dependence: perfor-

mance is much worse at both low and high frequencies and high in an

intermediate frequency range around 83 Hz. The ratio of the grey and

the black curve’s frequency average yields a measure of overall

intensity invariance. Grey line at 0.1 indicates chance level

173 9 44 mm (600 9 600 DPI)
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frequencies told us how intensity invariant a cell is on

average overall AM frequencies. In order to pinpoint AM

frequencies where intensity invariance was exceptionally

high—i.e., AM frequencies, which yield spike responses

more robust to changes in intensity—we applied a fre-

quency-resolved measure. The ratio of the performance in

the self- and the cross-validation task at each frequency

was taken as the frequency-resolved intensity invariance

(see Fig. 2d).

We then computed the mean and its standard error over

all cells in a class. In order to avoid domination of the

class’ mean by highly invariant cells, we rescaled each

cell’s curve to vary between 0 and 1 prior to the averaging.

By this, we lose all level information and are sensitive to

changes of invariance with frequency only.

Analysis of natural signals

One major function of the grasshopper’s auditory system is

species recognition (e.g., Stumpner and von Helversen

2001). We analyzed the envelopes of the songs of 17

species of the taxon Chorthippus to explore the statistics of

relevant natural stimuli (one song per species, kindly pro-

vided by M. Bauer and O. von Helversen, see Fig. 4a–q for

species names and AM amplitude spectra).

We extracted song envelopes by the root mean square

method: the raw signals (sampling frequency 100 kHz)

were squared, filtered by a flattop window of duration

2.5 ms and square-rooted. Amplitude spectra of these

envelopes (Fig. 4a–q) were sampled down to 30 linearly

spaced values between 5 and 200 Hz.

Where in the AM spectrum does this set of natural

stimuli exhibit large variations across species, indicating

frequency ranges potentially suitable for species recogni-

tion and discrimination? To answer this question we per-

formed factor analysis (FA) (see e.g., Lawley and Maxwell

1971 or Martinez 2004). This method seeks to explain a set

of observed variables in terms of a few latent variables or

factors. In our case, the observed variables x~¼
fx1; . . .; x30gT

are vectors having the AM amplitude at each

of the 30 frequencies as entries, whose correlation structure

across species is to be represented by 4 latent variables

f~¼ ff1; . . .; f4gT
. FA assumes a linear model of the form

x~¼ Kf~þ e~. e~ describes observation noise and K ¼
fk~1; . . .; k~4gT

is a 4 9 30 (rows 9 columns) matrix con-

taining the factor loadings. We are not interested in the

factors f~i, but in common patterns among the AM spectra

of the songs of different Chorthippus species as revealed

by the loadings k~i. These loadings take the form of tem-

plate spectra and show the frequency content of correlated

power in the signals. The four factors used here account for

64% of the total variance. To generate error bars for the

factor loadings, we performed leave-one-out subsampling:

We did the FA using only 16 of the 17 songs and calculated

the standard error over the 17 possible subsets. While

principal component analysis is equally successful in terms

of dimensionality reduction, it accounts for approximately

the same amount variance (67%) we chose FA over prin-

cipal component analysis. We did this because the concept

underlying FA is more close to our goal, which is to

explain the AM spectra in terms of few, latent or generative

factors.

All analysis was performed in Matlab 2009a.

Results

Intensity invariance of AM frequency classification

is generally low

To illustrate the analysis performed here, we show an

example in Figs. 1 and 2. We presented the set of AM

frequencies at two different intensities lying either at the

middle or at the end of the rising part of the cell’s rate-level

curve (75 and 90 dB, respectively; Fig. 1a). From the

response obtained in this way (Fig. 1b, c), we calculated

spike train distances (at a temporal resolution of s = 7 ms)

and used them to classify AM frequency for each intensity

separately, resulting in two confusion matrices: one for

75 dB and one for 90 dB (Fig. 2a, b). The values at the

main diagonal of the confusion matrix indicate the proba-

bility of correctly classifying AM frequency: both dia-

grams show that performance over AM frequency was

mostly low pass, with high values at low frequencies and a

cutoff frequency around 83–125 Hz after which perfor-

mance was significantly worse (Fig. 2d, dashed and dash-

dotted line). The curves for both frequencies were similar

apart from an increased general performance and a higher

cutoff frequency for 90 dB. The average performance over

intensities yielded the cells’ performance in the self-vali-

dation task (Fig. 2d, continuous grey line). To quantify

intensity invariance, we classified AM frequency for the

whole set of responses obtained at 75 and 90 dB in the

cross-validation task. This yielded a single confusion

matrix (Fig. 2c), the main diagonal of which quantifies

how well the cell performed when the same AM frequency

was presented to the classifier at different intensities. Fre-

quency dependence of cross-validation performance was

strongly band pass, with low performance both at low and

high frequencies (Fig. 2d, black line). Yet, there existed a

range of intermediary frequencies around 83 Hz where

performance was greater than 80%. This was in stark

contrast to the low-pass performance curves for the self-

validation task (compare grey and black lines in Fig. 2d):

here, performance was high for low frequencies at both

intensities. Hence, although the cell presented here carried
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information about low frequencies at both intensities, this

information was not robust to changes in intensity.

General classification performance for AM frequency as

quantified by self-validation was highest for the interme-

diate layer of local interneurons, and lowest for the input

(receptors) and the output layer (ascending interneurons) of

the network considered here (Fig. 3a, Kruskal–Wallis test

p \ 0.002; Tukey–Kramer post hoc test p \ 0.05 for TN1

and BSN1 against ascending interneurons, all other pairs

not significant). Cross-validation performance was signifi-

cantly lower than self-validation performance for each cell

class (Wilcoxon’s signed rank test p between 6 9 10-5 and

0.04, box plots for cell classes in Fig 3b).

Intensity invariance, calculated as the ratio between self-

and cross-validation performance for each cell, was gene-

rally poor for all cell classes (Fig. 3c, median invariance:

receptors 0.37; the two local interneurons TN1 0.48 and

BSN1 0.56; ascending interneurons 0.49; no significant

differences between cell classes; Kruskal–Wallis test

p = 0.33). 60% of the cells (22/37) exhibited an intensity

invariance\0.5. This means that the changes in the neuronal

responses introduced through different intensities degraded

frequency classification performance by more than 50%.

Only 5% of the cells (2/37) exhibit intensity invariance[0.9.

This is in strong contrast to recent findings in songbird field

L, where 22% of the cells recorded have been found to be

highly intensity invariant (Billimoria et al. 2008).

Intensity invariance is confined to specific frequency

bands

Intensity invariance of single neurons was rather low at all

processing levels. However, the systematic differences in

the exemplary performance curves in Fig. 2d suggest that

intensity invariance is not uniform across frequencies. We

therefore examined the frequency dependence of intensity

invariance.

We obtained frequency-resolved measures for each cell

class by comparing the performance obtained in the self

and the cross-validation task at each frequency (see

‘‘Methods’’ for details), that is, at each AM frequency we

calculated the ratio between the performance achieved in

the cross-validation task and the performance reached in

the self-validation task. In the example in Fig. 2d this

amounted to taking the ratio between the solid grey and

black curve at each frequency.

Figure 3d shows a remarkably high-intensity invariance

of 0.75 and 0.87 at 83 Hz for TN1 and BSN1, respectively.

A Kruskal–Wallis test revealed that there existed signifi-

cant changes of invariance over frequency for TN1 and

BSN1 (Fig. 3d; p \ 0.001 and p \ 0.05, respectively) but

not for receptors and ascending interneurons (p [ 0.37). A

comparison of the invariance values at 83 Hz to those at 10

and 167 Hz further suggests that the frequency dependence

of TN1 and BSN1 is band-pass like (Wilcoxon’s signed

rank, p between 1 9 10-4 and 0.04). Thus, although

intensity invariance is low when averaged across frequen-

cies, for local interneurons there exists a frequency band

around 83 Hz where the decoding of AM pattern is robust

to changes in intensity.

Intensity invariance coincides with the statistics

of natural signals

Behaviorally relevant information of grasshopper songs

resides particularly at two frequency bands: low AM fre-

quencies, between 10 and 50 Hz, carry information about

the gross syllable-pause structure and species identity (von

Helversen and von Helversen 1998; Safi et al. 2006; Schmidt

et al. 2008). A second frequency band, between 60 and

110 Hz, provides additional information about envelope fine

structure, which is used to infer physical condition, sex, and

species identity (von Helversen 1972; Kriegbaum 1989; von

Helversen and von Helversen 1997; Machens et al. 2001;

Safi et al. 2006; see Fig. 4). FA (see ‘‘Methods’’) of the AM

spectra of songs from 17 species of the Chorthippus group

illustrated this nicely: while the first and fourth factors were

mostly loaded at low frequencies \50 Hz, the factors two

and three exhibited concentrated power in a band between

60 and 110 Hz (Fig. 3e, black line and grey-shaded area).

In order to examine whether there exists a correspon-

dence between natural signals and neuronal properties as

suggested by theories of optimal coding, we compared

frequency dependence of intensity invariance to the sta-

tistics of natural signals. The coding properties of the

neurons considered here are highly conserved between

Locusta migratoria and Chorthippus biguttulus (Ronacher

and Stumpner 1988; Neuhofer et al. 2008). This allows us

to compare electrophysiological data obtained from Locu-

sta with natural signals relevant to the Chorthippus group.

Although the stimuli used to quantify intensity invariance

consist of rather simple sinusoidal amplitude modulations

and neurons are known to be non-linear (see e.g., Machens

et al. 2004), neurons can often be well approximated as

linear encoders (see e.g., Rieke et al. 1999; Machens et al.

2001 for the case of auditory receptors of grasshoppers).

Furthermore, the periodic structure of the sinusoidally

amplitude modulated stimuli used here is not unlike the

structure of natural songs (see the harmonic content of the

spectra in Fig. 4r, s). Thus, we consider it plausible to

extrapolate our findings to natural stimuli.

Most remarkably, for receptors and local interneurons

the invariance had its maximum within the behaviorally

relevant frequency band around 83 Hz: the species-specific

natural signals exhibited considerable variation in a fre-

quency range coincident with the one where neuronal
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intensity invariance was maximal (compare Fig. 3d green

and red line with Fig. 3e black line and grey-shaded area in

both plots). Thus, there appears to exist a good match

between the AM frequency content of natural signals and

the AM frequency dependence of invariance properties of

auditory interneurons.

Spike-count cues are not robust to changes of intensity

Besides the quantification of decoding performance, the

van Rossum metric allowed us—by varying the temporal

resolution parameter s—to gain insight into the time scales

at which classification-specific information resides. For
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small to intermediate s (5–30 ms for our cells), this cor-

responds to a spike-timing code. For very large s relative to

the time scales of the stimulus fluctuations (s C 500 ms),

this amounts to a spike-count code (Theunissen and Miller

1995; van Rossum 2001). We now want to examine which

time scales were suited for the decoding of AM frequency

at a single intensity and whether these time scales changed

when intensity was not held fixed in the stimulus ensemble.

This is especially interesting with respect to observations

of an increase of the role of spike-count changes at higher

processing levels in grasshoppers (Vogel et al. 2005;

Wohlgemuth and Ronacher 2007) as well as vertebrate

auditory systems (e.g., Joris et al. 2004). Hence, we

examined how robust such spike-count cues were to

changes in signal intensity.

Figure 5a shows the decoding performance in the self-

validation (grey line) and cross-validation (black line) task

as a function of the temporal resolution parameter s for the

same local interneuron TN1 as in Fig. 1. We subtracted

chance level from all performance values for the analysis

of the contribution of spike count. The optimal time scale

for both tasks was *7 ms, indicating that optimal decod-

ing of AM frequency relied on a spike-timing code.

However, a look at the performance for very large
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s[ 500 ms, where only differences in spike count con-

tribute to the decoding (van Rossum 2001), revealed a

discrepancy: performance at large s was *0.15 for the

self-validation task (decoding of AM frequency at a single

intensity), but zero for the cross-validation task (decoding

of AM frequency across intensities). Hence, while a

decoder based on spike count yielded moderate perfor-

mance at a single intensity, it completely failed when the

same temporal pattern was presented at different intensi-

ties. In the latter case, changes in spike count evoked by

AM frequency could not be disambiguated from those

evoked by changes in intensity.

To explore this more systematically, we quantified the

contribution of spike count to the overall decoding perfor-

mance (after chance level has been subtracted) as the ratio

between the maximal performance at the optimal s (usually

5–30 ms) and the performance at s = 512 ms. Figure 5b

and c show histograms of the contribution of spike count for

both tasks. For the self-validation task, spike count con-

tributed 10–65% to overall performance (Fig. 5b) suggest-

ing an important role of spike-count cues in the encoding of

AM frequency. However, in the cross-validation task, spike

count contributed less than 1% for 26/37 cells (less than 20%

for 35/37 cells, see Fig. 5c). For two ascending interneurons

(AN4 and AN11), contribution of spike count is even higher

than in the self-validation task (Fig. 5c, two rightmost

orange bars). This indicates that the temporal pattern of

spikes changes strongly with intensity for these cells.

Thus, we can rule out a general transformation of the

code from spike timing to spike count for the decoding of

AM frequency in the metathoracic ganglion, as it is not

robust to changes in the signal’s intensity.

Discussion

In the analysis presented here, we investigated the problem

of intensity invariant decoding of AM frequency. The two

main findings were (1) a low general intensity invariance of

the system, and (2) a range of AM frequencies around

83 Hz for which intensity invariance was remarkably high

for local interneurons. In order to examine whether there

exists a correspondence between natural signals and neu-

ronal properties as suggested by theories of optimal coding

(see e.g., Barlow 1961; Machens et al. 2005), we compared

the AM frequency dependence of intensity invariance with

the statistics of natural signals in different grasshopper

species. To put this comparison on firm ground, we have to

emphasize that the coding properties of homologous tho-

racic auditory neurons are indistinguishable between the

locust and Chorthippus biguttulus, a European grasshopper

species, for which detailed behavioral data exist (Ronacher

and Stumpner 1988; Neuhofer et al. 2008). Based on this

strict evolutionary conservation of the thoracic auditory

pathway we can take the locust’s auditory pathway as a

model system for other gomphocerine grasshoppers.

Before we proceed to this comparison, however, we will

discuss another aspect of our analysis. Intensity invariance

cannot be treated independently of the neuronal coding

schemes. By variation of the temporal resolution parameter
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s, the decoding algorithm based on the van Rossum metric

allows one to consider invariance under the two most

commonly assumed neuronal codes: a spike-timing code

and a spike-count code.

Spike-count codes

Two previous studies found a decrease of spike-timing

precision and an increasing role of spike-count cues for the

discrimination of temporal patterns at the transition from

local to ascending interneurons: first, a general increase of

spike-train variability has been observed between local and

ascending interneurons, hinting at spike-timing cues get-

ting less reliable (Vogel et al. 2005). A follow-up study

investigated the discrimination of SAM stimuli based on

metric distances of spike trains (Wohlgemuth and Ron-

acher 2007). This study reported a decrease of classifica-

tion success from *80% in receptors and primary-like

local neurons to *50% or less in ascending neurons. For

the latter neurons, the contribution of spike timing to the

decoding of AM frequency decreased drastically, while the

contribution of spike count increased (Fig. 7 in Wohlge-

muth and Ronacher 2007). This suggests a change from a

temporal to a spike-count code. A similar transformation of

the coding scheme is discussed for vertebrate auditory

systems (Lu et al. 2001; Joris et al. 2004; Narayan et al.

2006). Here, we show that spike-count cues are not robust

to changes of intensity (see Fig. 5) and hence unlikely to be

employed in general at that stage in the auditory system of

grasshoppers. As intensity itself heavily influences the

number of action potentials elicited by a stimulus, a spike-

count code for AM frequency is viable for the decoding at a

narrow intensity range only. The situation may be different,

however, if not a broad range of stimuli but only specific

features have to be encoded. One example is the gap

detection response of the AN4 neuron. This neuron

responds in a phasic-tonic manner to natural songs or to

block stimuli, but ceases to spike if the stimulus exhibits

small gaps of a few millisecond duration (Ronacher and

Stumpner 1988; Franz and Ronacher 2002). Hence, by its

spike count this neuron can encode the presence/absence of

gaps. However, the specific spike-count-based encoding of

gaps by the AN4 neuron is not restricted to a single

intensity only, although its specific response depends on

intensity. At lower SPL, only larger gaps can be detected,

and the neuronal data closely parallel the behavioral data

(Ronacher and Stumpner 1988).

Dealing with poor intensity invariance:

behavioral relevance

The low overall intensity invariance (Fig. 3c) seemed

rather surprising: a system whose task is to classify

auditory signals highly relevant for mate recognition

should be less liable to intensity changes. For example,

Billimoria et al. (2008) found song-specific neurons in

songbird field L, which were highly intensity invariant.

However, this need not necessarily pose a problem for

behavioral performance. A more general intensity invariant

recognition could be achieved by two different strategies:

either by appropriate neuronal processing at subsequent

processing stages in the brain or through specific design of

the relevant signals.

The metathoracic ganglion is only the first, nonetheless

important, processing stage for auditory information. Its

output is transmitted via ascending neurons to the brain

where behavioral decisions are made (Bauer and von

Helversen 1987). Hence, it is conceivable that appropriate

processing at subsequent stages located in the brain leads to

an improved intensity invariant representation of auditory

stimuli in the brain. Adaptive processes (e.g., Abbott et al.

1997; Benda and Herz 2003; Benda and Hennig 2008;

Hildebrandt et al. 2009) and divisive inhibition (Koch

1998; Uchida and Mainen 2007) are known to lead to

intensity invariance. Furthermore, in this study we were

exclusively concerned with intensity invariance at the level

of single cells. Yet, it has been shown that intensity

invariance can emerge as a result of an optimal readout of

cells exhibiting band-pass intensity and frequency tuning in

primary auditory cortex of marmosets (Sadagopan and

Wang 2008). The nicely staggered, band-pass intensity

tuning in the auditory system of a bushcricket suggests that

one might generalize this to insect auditory systems as well

(Römer 1987). However, the intensity tuning of ascending

interneurons in grasshoppers seems not to be organized in

such orderly fashion (Stumpner and Ronacher 1991;

Stumpner et al. 1991). In addition, the temporal specificity

of ascending interneurons is highly diverse (e.g., Stumpner

and Ronacher 1994; Wohlgemuth and Ronacher 2007;

Creutzig et al. 2009), further complicating an intensity

invariant readout of temporal pattern. Whether such pro-

cesses leading to intensity invariance at the population

level really take place in the grasshopper’s brain must

await further study by applying more sophisticated

decoding algorithms.

A different solution to the problem of intensity invari-

ance would be to adjust the relevant signals to properties of

the receiver. This road may pertain specifically to com-

munication systems, which are shaped in a reciprocal

coevolution of sender and receiver. By restricting relevant

signal features to specific frequency bands, a certain degree

of intensity invariance can indeed be attained, as indicated

by the results of Fig. 3. Our frequency-resolved analysis

revealed that there exists an AM frequency band around

83 Hz where intensity invariance is high. We observed a

close correspondence between this frequency band and the
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frequencies, at which communication signals vary much

across species, indicating a potential role of this band in

species separation (compare Fig. 3d and 3e).

The position of the optimal frequency band has probably

to do with basic neuronal properties: around 83 Hz, neu-

ronal phase locking to the AM envelope is most precise

(Wohlgemuth and Ronacher 2007; see our Fig. 1a). Thus,

stimuli containing power around 83 Hz evoke highly

reproducible and phasic response patterns in receptors and

local interneurons. This might lead to spike patterns being

stable across intensities and, hence, enhanced intensity

invariance. Note, that we found the peak of neuronal

intensity invariance at 83 Hz only for local interneurons

but not for receptors and ascending interneurons. That is,

we could not show that the population of ascending inter-

neurons investigated here propagates this invariance

directly to the brain. This could indicate that the increased

intensity invariance is an epiphenomenon without any

relevance for subsequent computations and behavior.

However, two features of the ascending interneurons could

have prevented us from detecting it with the methods

applied here. This group of cells probably does not encode

the full stimulus waveform but specific features of the

stimulus. For instance, the aforementioned AN4 is speci-

fically inhibited by gaps as short as 3 ms in the AM

envelope (Stumpner and Ronacher 1994). Due to this

inhibition the full stimulus pattern can be retrieved only

very incompletely from the cell’s response. In addition, the

neural code of ascending interneurons is probably more

complex and possibly non-linear. Likely, the simple metric

applied here is not able to extract the full information

contained in such complex codes. A well understood

exemplar is AN12, which encodes the syllable-pause ratio

in the number of spikes in its bursts (Creutzig et al. 2009).

While the response at the level of single spikes is intensity

variant, the burst component of the response might turn out

to be highly intensity invariant. Nevertheless, our data

show that information in the frequency band between 60

and 110 Hz is available in a way, which may allow the

ascending neurons to extract feature-specific information in

an intensity invariant manner. This hypothesis could be

tested by exploring the intensity invariance of the presen-

tation of specific, behaviorally relevant features rather than

that of the overall AM pattern as done in this study.

A set of additional observations indicates that the high

intensity invariance at 83 Hz is indeed exploited and

employed in the communication of grasshoppers. In the

grasshopper Chorthippus biguttulus, sex recognition relies

partly on the fact that female songs contain brief pauses

within the noise syllables, while these pauses are masked in

the songs of males by a phase shift between movements of

the left and right hind leg (von Helversen and von

Helversen 1997). Males that have lost one hind leg, however,

do produce gaps in their songs, and females strongly reject

such signals (Kriegbaum 1989). The gaps in the songs of

injured males as well as the brief pauses in female songs

have similar time scales, being associated with signal

power at 60–110 Hz (see Fig. 4r, s). Thus, both sexes

evaluate information in this frequency range and benefit

potentially from increased intensity invariance. In addition,

other species (see Figs. 3e, 4a–q) produce signals, which

contain different amounts of power in this high-frequency

band, thereby potentially contributing to species separa-

tion. Thus, evidence from behavioral studies and the sta-

tistics of relevant natural signals fits well with the restricted

invariance properties of the receiver’s auditory system

unveiled in our study. This suggests that signal evolution of

gomphocerine grasshoppers may have exploited a specific

frequency channel of the receiver that exhibits best

robustness against intensity changes. In order to test the

behavioral relevance of our results directly, one should test

behavioral intensity invariance with stimuli whose fre-

quency content is manipulated as to either contain or lack

signal power around 83 Hz.

An alternative view on optimal coding

Finally, we want to hypothesize about the match between

neuronal invariance and natural signals in terms of the

evolution and optimization of communication signals and

the sensory networks processing them. Optimal coding

theory (e.g., Attneave 1954; Barlow 1961; Atick 1992;

Smith and Lewicki 2006) or the matched filter concept

(Wehner 1987) both predict that coding properties of

neurons were shaped by the statistics of natural signals they

process. Indeed, there are reports that sensory neurons have

adapted their response characteristics to the statistics of

natural stimuli (e.g., Simoncelli and Olshausen 2001;

Lewicki 2002; Laughlin and Sejnowski 2003). The

adjustment of sensory receivers to the properties of rele-

vant signals may be the normal situation in evolution, as

the receiver cannot ‘‘control’’ the properties of environ-

mental signals.

Here, we argue in the spirit of the sensory exploitation

hypothesis (Ryan et al. 2001) that the situation may be

different for communication systems: the coevolution of

sender and receiver in a communication system entails a

continuous reciprocal adaptation of both partners.

Depending on the evolutionary plasticity of the sender and

the receiver as well as the selective pressures acting on

both, either the signal’s structure or the receiver’s pro-

cessing properties may adapt more rapidly.

For communication systems subject to sexual selection,

selective pressures are usually distributed asymmetrically

between the sexes. In the case of the gomphocerine

grasshoppers in the Chorthippus group, a male’s aim is to
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reach as many females as possible with their calling songs.

As the females are spaced randomly, the signals will

impinge on each female with different intensity. Thus, the

selective pressure acting on males to produce signals,

which appear attractive over a broad range of intensities,

may have favored males that exploited the intensity

invariance properties of the females.

In addition, the communication signals are evolutionary

young as compared to the age of the neural network exam-

ined here. The morphological and physiological properties

of the metathoracic network are conserved for *50 million

years (Flook and Rowell 1997; Neuhofer et al. 2008). In

contrast, many species of the Chorthippus group included in

our study originated relatively recently, probably through

rapid radiation (Bridle et al. 2002; Bugrov et al. 2006). This

suggests that the species-specific courtship signal is a highly

plastic trait, whereas the neuronal hardware is a static trait in

this group. This might be because the auditory system of

grasshoppers is subject to multiple constraints as it is used

not only during courtship but also for predator avoidance

(Stumpner and von Helversen 2001).

In summary, evidence from neurophysiology, natural

signal statistics, and evolutionary history of the commu-

nication system (Neuhofer et al. 2008) suggests that the

signals are adapted to the intensity invariance properties of

the receiver. Under this hypothesis, grasshoppers chose to

solve the problem of intensity invariant object recognition

in a different way than predicted by the optimal coding

hypothesis (Barlow 1961, 2001). We propose that natural

communication signals may have evolved to optimally

match the properties of the neuronal hardware of animals

(Lewicki 2002). Possibly, this is particularly relevant for

signal design and evolution in taxa, where rapid radiation

of species is driven by a diversification of communication

signals as in Hawaiian crickets (Mendelson and Shaw

2005) and Drosophila (Hoy et al. 1988), songbirds (Price

1998), cichlids (van Alphen et al. 2004) and anurans

(Gerhardt and Huber 2002). This applies to the evolution of

human speech as well (Lewicki 2002).
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