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Introduction to acoustic communication in crickets 
and grasshoppers

Many Orthopteran species use acoustic signals for intraspe-
cific communication to attract or to approach potential mat-
ing partners. In crickets only the males sing, and a female 
inclined to mate makes a phonotactic approach toward the 
singing male. This basic scenario of communication is also 
found in many grasshoppers. In some grasshopper spe-
cies, however, females respond to a singing male with a 
song of their own, and then males show phonotaxis toward 
the responding female. Crickets and grasshoppers are taxa 
that diverged more than 200,000,000 years ago (Flook and 
Rowell 1997) and obviously evolved their hearing capa-
bilities independently (for reviews see Stumpner and von 
Helversen 2001; Hennig et  al. 2004; Strauß and Lakes-
Harlan 2014; Strauß and Stumpner, this volume). The ears 
are located in different segments, in the forelegs and in the 
first abdominal segment. Correspondingly the neurons of 
the first processing stages reside in different ganglia. Even 
Tettigoniids and Gryllids probably evolved hearing organs 
independently, in spite of their similar location (Strauß 
and Lakes-Harlan 2014). For sound localization and direc-
tional hearing, grasshoppers and crickets have developed 
pressure-difference receivers but again with different ana-
tomical realizations (Michelsen et al. 1994; von Helversen 
1997; Michelsen 1998).

Songs of crickets normally consist of sound pulses 
with a relatively pure-tone carrier. Sound pulses are pro-
duced as continuous trills or as shorter chirps separated 
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by longer intervals. The carrier frequencies of different 
field cricket species are often around 3–6  kHz, whereas 
the species-specificity lies in the temporal pattern of pulses 
(Alexander 1962; Hennig et al. 2004). Grasshopper songs 
possess normally broadband carrier frequencies, cover-
ing ranges from 1–2 kHz up to >40 kHz (e.g. Meyer and 
Elsner 1996). Songs of different species show a variety of 
amplitude modulation patterns, ranging from repetitions of 
simple sound pulses to highly complex songs that may last 
for several minutes and exhibit series of different song ele-
ments (e.g., Elsner and Popov 1978; von Helversen 1986; 
Stumpner and von Helversen 1994; Elsner and Wasser 
1995). In both taxa, however, the species-specific pattern of 
amplitude modulations, i.e., the sound envelope, provides 
the most crucial cues for song recognition and the spe-
cies-specific preference functions (von Helversen and von 
Helversen 1997, 1998; Gerhardt and Huber 2002; Hennig 
et al. 2004; Hoy et al. 1998).

Using song models in which one can control differ-
ent features, it is possible to determine which temporal 
cues the animals use for song recognition and what makes 
a song attractive. Such experiments have been performed 
in several species, by observing phonotactic decisions 
of female crickets or the response songs of grasshopper 
females as indicators of song attractiveness. Females of 
different cricket species show clear preferences for certain 
pulse periods and duty cycles, sometimes in combination 
with preferences for chirp periods at much longer time 
scales (Grobe et  al. 2012; Rothbart and Hennig 2012; for 
katydids see Deily and Schul 2009). The preference func-
tions of female grasshoppers have been investigated in 
great detail for several species, mostly of the genus Chort-
hippus (von Helversen 1972, 1986; von Helversen and von 
Helversen 1994, 1997; Stumpner and von Helversen 1992, 

1994; Gottsberger and Mayer 2007)—here we focus on C. 
biguttulus.

A most conspicuous feature of Orthopteran songs is their 
repetitive structure. In songs of different species some tens 
up to hundreds of stereotyped subunits are strung together 
(Fig. 1a). If one determines the Fourier components of the 
song envelope, this repetitive song structure manifests itself 
in a series of prominent frequency peaks and the basic song 
structure can well be approximated using a small number of 
Fourier components (4–5 in the example of Fig. 1b). Thus, 
it has been suggested that crickets and grasshoppers may 
process the songs in the frequency domain, ignoring the 
phase information of the Fourier components (for a simi-
lar discussion in the domain of vision see Daugman 1985). 
Whereas in some katydids an analysis of songs within the 
spectral domain may suffice for recognition (see Bush 
et  al. 2009), this type of processing is, however, not real-
ized in crickets and grasshoppers: behavioral tests on crick-
ets (Gryllus bimaculatus) and grasshoppers (Chorthippus 
biguttulus) provided evidence that the song envelopes are 
processed in the time domain (Hennig 2009; von Helversen 
and von Helversen 1998; Schmidt et al. 2008). Hence our 
search focuses on neuronal circuits that measure syllable 
and pause durations in the time domain (Balakrishnan et al. 
2001).

There is evidence that the final decision of whether or 
not an acoustic signal is attractive for a female occurs in 
the brain. In the brain of crickets, several neurons are 
known that show band-pass filter properties with respect 
to the species-specific pulse pattern (Schildberger 1984; 
Zorović and Hedwig 2011; Kostarakos and Hedwig 2012). 
In addition, command neurons for the song production also 
originate in the brain and descend from there to the central 
pattern generator (CPG) for song, which is located in the 

Fig. 1   a Song structure of 
Chorthippus biguttulus. Oscil-
logram of a song segment, 
its envelope, and a ‘syllable-
pause’ song model as used 
in behavioral tests. b Fourier 
amplitude spectrum of the 
song envelope shown in a. c 
Structure of the computational 
model for song recognition. 
Feature detectors consist of LN 
models with a linear filter and 
a sigmoidal non-linearity. The 
output of each feature detec-
tor is integrated over a given 
time window, and the resulting 
feature values are weighted and 
combined to yield a prediction 
of the behavioral response for a 
given song; c from Clemens and 
Ronacher (2013)
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thoracic and abdominal ganglia (Hedwig 2000; Schöneich 
2012). Behavioral evidence after lesions and after selec-
tive heating of the head ganglia in grasshoppers likewise 
suggests that the final decision about signal attractiveness 
occurs in the brain (Ronacher et  al. 1986; Bauer and von 
Helversen 1987). Command neurons that descend from 
the brain to the thoracic song CPG have been described for 
grasshoppers as well (Hedwig 1994). However, grasshop-
pers and crickets differ substantially in the neural substrates 
of their auditory pathways, which provide the input to the 
brain’s decision centers.

Principle organization of the auditory pathways 
in crickets and grasshoppers

Crickets

Most auditory receptor neurons are tuned to the calling 
song frequency, while only few sensory neurons cover 
the ultrasonic range for bat detection (Imaizumi and Pol-
lack 2005). The receptor neurons project to a central audi-
tory neuropile within the prothoracic ganglion from which 
several interneurons receive sensory input (Eibl and Huber 
1979; Wohlers and Huber 1982). However, only few audi-
tory interneurons appear to be relevant in the context of 
acoustic communication (Schildberger and Hörner 1988): 
a local omega-shaped interneuron (ON1) that mediates 
a contrast enhancement for directional hearing and two 
ascending interneurons (AN1, AN2). These two neurons 
are dedicated in a categorical way to different functions 
and are tuned to different frequency ranges: AN1 to low 
frequencies around 5 kHz relevant for the detection of con-
specific signals, whereas AN2 responds to high-frequency 
sounds (>15 kHz), e.g., bat calls, and spike bursts of this 
neuron induce avoiding responses (e.g., Hoy 1989; Wytten-
bach et al. 1996; Marsat and Pollack 2006). While the burst 
coding of AN2 suggests feature extraction of bat calls at the 
prothoracic level, the temporal cues of the conspecific song 
pattern are processed at the next level in the brain (Schild-
berger 1984; Kostarakos and Hedwig 2012). Remarkably, 
for some katydids a similar layout is observed at the pro-
thoracic level (Tettigoniidae: Schul 1997; Triblehorn and 
Schul 2009), whereas in the Phaneropterinae more ascend-
ing neurons have been described which seems to correlate 
with a more complex communication in this group; see 
Stumpner and Nowotny (2014).

Grasshoppers

40–80 auditory sensory neurons originate in each of 
the tympanal organs, located in the first abdominal seg-
ment. The majority of sensory neurons is tuned to the 

low-frequency range around 3–7 kHz, only a smaller group 
preferentially responds to high frequencies (15  kHz up 
to >40 kHz: Römer 1976; Silver et al. 1980; Jacobs et al. 
1999). The sensory axons enter the metathoracic ganglion 
complex where they synapse onto auditory interneurons 
that form a dense auditory neuropil which harbors a first 
important processing module. Several types of local neu-
rons have been described; some of them exist as twins 
or triplets (Römer and Marquart 1984; Stumpner 1988; 
Stumpner and Ronacher 1991, 1994; Stumpner et al. 1991; 
Boyan 1992, 1999). Local neurons perform first process-
ing steps and then transmit their messages to a rather 
large number of ascending neurons (so far around 15–20 
different types have been identified, see Römer and Mar-
quart 1984; Stumpner 1988; Stumpner and Ronacher 1991, 
1994). The ascending neurons show different responses, 
ranging from tonic to phasic spiking and various combi-
nations of excitation and inhibition, thus responding more 
diversely to specific acoustic features than sensory neurons 
and local neurons (Stumpner et al. 1991; Vogel et al. 2005; 
Wohlgemuth and Ronacher 2007; Creutzig et  al. 2010; 
Wohlgemuth et al. 2011). There is a tendency that ascend-
ing neurons respond temporally sparse, and that also the 
population sparseness increases from local to ascending 
neurons (Clemens et  al. 2012). Thus a change of coding 
principles from a summed population code to a labeled line 
population code seems to occur rather early in the auditory 
pathway of grasshoppers, at the transition between local 
and ascending neurons (Creutzig et al. 2010; Clemens et al. 
2011). The large number of ascending auditory neurons in 
grasshoppers as well as the diversity of their feature selec-
tivity is in stark contrast to crickets where only two types 
of ascending neurons have been described (AN1, AN2) 
(Wohlers and Huber 1982; see also Kostarakos and Hedwig 
2012; Ronacher 2014).

Behavioral preference functions are well described by a 
relatively simple modeling framework

The previous paragraph left us with the main message that 
the peripheral auditory pathways are rather differently 
organized between crickets and grasshoppers regarding the 
number of elements and their physiological properties. It 
was therefore surprising that models for song recognition 
with similar properties were able to efficiently describe 
and predict the behavioral responses in these two distantly 
related taxa.

The basic structure of the model consists of three pro-
cessing steps: (1) feature extraction, (2) temporal integra-
tion and (3) linear combination (Fig. 1c). Feature extraction 
is implemented with a bank of ‘LN models’—each contain-
ing a linear filter element followed by a nonlinearity. The 
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linear filter responds to specific temporal features of the 
sound envelope pattern—it hence acts as a template that is 
compared to the stimulus. The nonlinearity is equivalent to 
the input–output-function of a neuron.

The way a linear filter works is demonstrated schemati-
cally in Fig. 2. The filter is shifted along the stimulus from 
left to right (Fig.  2a). At each point in time, the filter is 
multiplied with the current stimulus (1–4 in Fig.  2a) and 
the point-wise product of filter and stimulus is summed 
to yield the filter output (colored circles). The filter out-
put thus reflects the similarity between the current stimu-
lus history and the template. A filter with a positive lobe 
combined with a negative lobe is a differentiating (or band-
pass) filter and constitutes an offset detector. It responds 
strongly to transients (segments 2 and 4 in Fig. 2a); it does 
not respond to constant stimuli (1 and 3) and hence does 
not reflect stimulus level: segments 1 and 3 have different 
levels but yield the same, zero output. This is because the 
positive and negative values in the product between stimu-
lus and filter cancel each other in the sum. Offsets (nega-
tive slopes in the stimulus) evoke positive responses; onsets 
(positive slopes) yield negative responses since the higher 
level matches the negative part of the filter (2 in Fig. 2a). A 
filter with a negative slope combined with a positive slope 
responds preferentially to onset transients in the stimulus 
(Fig. 2b: the output is positive for onsets and negative for 
offsets). A filter with a single, positive lobe acts as a low-
pass filter—it smoothens the stimulus and encodes the 
stimulus level (Fig. 2c).

The nonlinearity (see Fig. 1c) then transforms the filter 
output; this step can be imagined as translating a graded 
membrane potential into the cell’s spiking output. A par-
ticularly interesting aspect of the model is the integration 

step. The model performs a long-term temporal integration 
of the output of each feature detector, yielding a single fea-
ture value αi for each feature detector (i = 1, 2, 3). These 
feature values αi are then attributed with specific weight 
factors and linearly combined, yielding a prediction of the 
behavioral response for a given song. Notably, the duration 
of the linear filters does not need to exceed 64 ms.

It should be emphasized that—apart from the model’s 
basic structure—no additional prior assumptions were 
made. The optimal shapes of the filters and corresponding 
nonlinearities as well as the weight factors were found by 
a genetic learning algorithm (Mitchell 1998; Clemens and 
Ronacher 2013; Clemens and Hennig 2013). The algo-
rithm started from a randomly chosen set of 500 solutions 
and those solutions that provided a better prediction for the 
measured behavioral responses had a higher chance to be 
propagated to the next generation of models. The model 
started from various sets of random filter components and 
found the optimal feature detectors by training the genetic 
algorithm on a large set of behavioral data and the respec-
tive stimulus envelopes. For training only part of the data 
set was used and the model’s performance was then tested 
with the remaining data (leave-one-out cross-validation; 
for details see Clemens and Hennig 2013; Clemens and 
Ronacher 2013). Remarkably, a model with only two fea-
ture detectors performed very well (Clemens and Ronacher 
2013).

The effects of filters and nonlinearities will now be 
exemplified with the grasshopper model, on the basis of 
some typical model song features (Fig. 3). Figure 3a shows 
the shapes of the two filters, which resemble Gabor fil-
ters (see below). In Fig. 3b these two filters act on a song 
model with a syllable-pause and a pronounced accentuation 
at the syllable onset (compare Fig. 1a); the filter response 
is shown in the lower two traces. Both filters react with a 
positive lobe at the two stimulus’ offsets. However, with the 
green filter the second positive lobe is smaller. The nonlin-
earities in Fig. 3c are very steep and similar, only slightly 
shifted on the x-axis. The nonlinearities cut off all negative 
and part of the positive values and let pass only large posi-
tive values, producing an almost binary response (Fig. 3d). 
The temporal integration computes an average of the traces 
in Fig. 3d, yielding two numbers (f1 = 0.26, f2 = 0.17) as 
outputs of the respective feature detectors. f1 and f2 are then 
combined, with proper weights, yielding the model’s pre-
diction of the behavioral response. Note that the second 
(green) filter has a negative weight (see inset in Fig.  3f). 
The combined performance of the model is extremely 
high, explaining 87 % of the behavioral variance (Fig. 3f, 
r2 = 0.87).

In Fig. 4 the model’s responses to a standard song pat-
tern with varying pause durations are exemplified. C. 
biguttulus females exhibit a band-pass-like preference 
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function to variation of this parameter with a peak around 
18 ms (Fig. 4e). The plots in Fig. 4a–c demonstrate how 
this band-pass is realized in the model. With a very short 
(4-ms) pause both filters show a weak and similar response 
(Fig. 4b, c). With a preferred pause (18 ms), the red filter 
produces two positive lobes that exceed the nonlinearity’s 
threshold, whereas the green filter responds only to the 
larger offset at the syllable’s end. However, if the pause 
becomes longer (here 50 ms), the green filter output stays 
high during the pause, whereas the red filter still produces 
two shorter positive bumps (in response to the offset and 
the next onset). In Fig. 4d, the output of the two filters is 
plotted against pause duration. The green curve resembles 
a high-pass for pause duration, while the red curve shows 
weak band-pass properties. Its slow decline for very long 
pauses is due to the fact that with increasing pause dura-
tion the off- and onsets of syllables occur more rarely (see 
numbers in Fig.  4c). The combination of the two filter 
outputs—green has a negative weight—now reproduces 
well the band-pass-like preference function of behav-
ing females (Fig.  4d, e). A further interesting result was 
found with respect to the gap detection of C. biguttulus: 
females of this species reject songs with syllables that are 
interrupted by tiny gaps, if the gaps are longer than about 
3 ms (von Helversen 1972; Ronacher and Stumpner 1988). 
Although there was no specific training to this type of 

stimuli and the 64-ms filter was long compared to the gaps 
to be resolved, the model also reproduced this specific gap 
rejection rather well (see Fig. 4f).

Figure  5 shows the model features for two species of 
crickets (upper row: Gryllus bimaculatus; lower row: G. 
locorojo). The respective filters are shown in red and blue, 
blue being assigned with a negative weight. The nonlin-
earities are less steep than in the grasshopper model, but 
still transform the output of the LN-model into a binary-
like signal (Fig.  5f for G. bimaculatus). Figure  5c shows 
the response of the two detectors to variation of the pulse 
period of song models. The red filter responded best to 
periods of 30–40  ms, which corresponds to the fact that 
the sinusoidal filter covered approximately 2 periods per 
64  ms. The blue filter exhibited roughly one period per 
64  ms and responded to longer periods or longer pauses 
before a pulse (>60  ms Fig.  5c). Since this detector car-
ried a negative weight it induced a stronger roll-off of the 
preference function at long periods (compare Fig.  5c and 
d, upper panel). For the other species (Fig. 5, lower row), 
the two filters were more similar and exhibited a sinusoidal 
shape. The second (blue) filter exhibited a higher modula-
tion frequency and correspondingly preferred shorter pulse 
periods (Fig.  5c, bottom panel); its suppressive influence 
thus shifted the peak of the preference function to some-
what higher periods (Fig. 5d).
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Similar model features in crickets and grasshoppers

Most remarkably, although the model’s solutions were 
found independently for grasshoppers and crickets, they 
exhibit several interesting similarities: First, a set of only 
two feature detectors sufficed to yield very good predic-
tions of the behavioral data (r2 ranged from 0.67 and 0.75 
for two Gryllus species to 0.87 for the grasshopper C. 
biguttulus, Figs. 5e, 3f). Including a third feature detector 
improved the model’s predictive power only marginally, 
both in the grasshopper and in the crickets (Clemens and 
Ronacher 2013; Clemens and Hennig 2013). The linear fil-
ters used for the model were short compared with the chirp 
or song duration, 64 ms for crickets and grasshoppers, but 
even shorter filters (>35 ms) yielded a comparable model 
performance in the grasshopper (Clemens and Ronacher 
2013)—for effects of filter duration in crickets see below 
and Fig. 6a–c. In both taxa the output of one detector with 
positive weight was combined with a negative weight of 
the other detector, yielding the typical species-specific 
band-pass preference functions (Figs.  3, 4, 5). A possible 

scenario for the implementation of the weighting function 
in a neuronal network would be given by the convergence 
of an excitatory pathway with an inhibitory input (compare 
Fig. 6e–h). Recently, brain neurons have been described in 
G. bimaculatus that exhibit specific interactions of inhibi-
tory and excitatory inputs, leading to a tuning of the neu-
ron’s spike response for pulse periods that closely resem-
bles the behavioral preference function of females of this 
species (Kostarakos and Hedwig 2012). Thus, these neu-
rons (in particular B-LI4) may represent the output stage of 
the model shown in Fig. 1c. It would be very interesting to 
further characterize the input to, e.g., B-LI4 to see whether 
these upstream neurons exhibit Gabor filter-like properties. 
Also in Drosophila, two classes of brain interneurons have 
recently been investigated that are essential for the behav-
ioral response to courtship song. Remarkably, one neuron 
class, being GABAergic, obviously represents an inhibitory 
pathway essential for the behavioral tuning (Vaughan et al. 
2014).

Second, in both taxa, both or at least one of the optimal 
filters found by the genetic algorithm resembled Gabor 
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filters, which are widely used in models of the visual and 
auditory pathways of vertebrates (e.g., Smith and Lewicki 
2006; Priebe and Ferster 2012). Gabor filters can be con-
structed by convolving a sinusoidal modulation with a 
Gaussian envelope, and have interesting properties. For 
example, they provide an optimal compromise between 
the resolution of spatial frequencies and the localization 
of visual patterns, and the responses of simple cells in the 
visual cortex of cats strongly resemble two-dimensional 
Gabor functions (Daugman 1985). If one determines a 
sparse basis for natural images the resulting basic functions 
resemble Gabor filters (Olshausen and Field 1996; Bell 
and Sejnowski 1997). In addition, Gabor filters may con-
fer robustness against noise (Atick and Redlich 1990; Zhao 
and Zhaoping 2011). Most remarkably, with slight param-
eter modifications of the Gabor filters several observations 
on the behavioral preferences in different species of cricket 
and katydids can be modeled in a straightforward way (see 
Fig. 6e–l, Hennig et al. 2014).

Third, an exceptional property of the model is its tempo-
ral integration step. The model explicitly neglects the tem-
poral position at which certain features occur in the sound 
stimulus—which appeared rather counter-intuitive given 
the regularity of natural songs and the fact that the temporal 
pattern of amplitude modulations is crucial for song accept-
ance in crickets and grasshoppers (see above). Put in a nut-
shell, this model assumes that the “What” is important, and 
not its “When”.

However, it is exactly this temporal integration stage 
that may explain several observations in crickets and 
grasshoppers that remained enigmatic in the past. For 
example, an attractive standard model of a C. biguttulus 
song consists of thirty to forty 80-ms noise “syllables”, 
separated by 15-ms pauses (Fig.  1a). However, this reg-
ularity is not an essential feature that females require to 
accept a song: if additional noise syllables of different 
durations (ranging from 5 to 130  ms) were randomly 
introduced in the standard song model the irregularity 
did not abolish its attractiveness (von Helversen and von 
Helversen 1998). It was even possible to combine two per 
se essentially not attractive patterns in a song, and this 
combination boosted the attractiveness to almost normal 
values (see Fig.  9 in von Helversen and von Helversen 
1998). These observations suggest that the females 
require the presence of certain features in the song’s enve-
lope, but that the exact timing of these features plays a 
minor role, consistent with the integration step of the 
model. Similar observations exist in crickets: Teleogryllus 
females responded well to shuffled patterns provided that 
these versions contained the three characteristic periods 
of their normal song, which again fits well to the temporal 
integration property of the model (Pollack and Hoy 1979; 
Hennig and Weber 1997).

Gabor functions may represent various preference 
functions of crickets

The preferences of many cricket (and also Tettigoniid) spe-
cies can be described in a two-dimensional space spanned 
by sound pulse duration and pause duration as axes (see 
Fig. 6). Some species exhibit a band-pass tuning to pause 
duration, or to a specific pulse duration (Fig.  6k, l), the 
preference functions of other species are tuned to certain 
duty cycles or periods (Fig. 6i, j). These behavioral prefer-
ence functions can be mimicked by small changes in basic 
parameters of the Gabor filters used by the model (see the 
corresponding Gabor filters in Fig.  6e–h). The width of 
the Gabor function determines the sharpness of the pulse 
period tuning: longer filters result in sharper tuning for 
pulse period (Fig. 6a, in this example the modulation fre-
quency was 50 Hz, leading to a preferred period of 20 ms). 
However, filter duration also affects the tuning for duty 
cycles; here a shorter Gabor filter leads to a narrower tun-
ing (Fig. 6b). Long filters may produce additional peaks at 
resonant frequencies (Fig. 6a, c, d), which is interesting in 
view of results that point at resonant properties in katydids’ 
preference functions (Bush and Schul 2006). The Gabor 
functions have the additional appeal that they allow for an 
easy and straightforward implementation in neuronal net-
works equipped with excitation and inhibition as illustrated 
in Fig. 6e–h (Hennig et al. 2014).

Thus, this very simple model is able to explain a large 
variety of preference functions as found in different species 
of crickets and katydids (Hennig 2003, 2009; Grobe et al. 
2012; Schul 1998; Schul et al. 2014). The fact that a transi-
tion of one type of preference function to another can be 
mimicked by small parameter changes of the Gabor filters, 
which in turn can be implemented by small variations in 
the relative timing and strength of excitation and inhibition, 
may help to understand the ease of evolutionary transitions 
that led to speciation events in crickets and katydids (see, 
e.g., von Helversen and von Helversen 1994).

Model features specific to grasshoppers

Behavioral tests on grasshoppers have demonstrated a 
remarkable robustness against different kinds of exter-
nal (ambient) noise and signal degradation (Ronacher and 
Krahe 1998; Ronacher et al. 2000; Ronacher and Hoffmann 
2003; Einhäupl et  al. 2011; Neuhofer et  al. 2011). The 
impact of intrinsic (neuronal) noise, which reveals itself as 
trial-to-trial variability of neuronal responses, seemed par-
ticularly enigmatic, since this variability increased strongly 
from the periphery to more central processing stages, i.e., 
in ascending neurons (Vogel et  al. 2005; Wohlgemuth 
and Ronacher 2007; Neuhofer et  al. 2011). The model 
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introduced above now offers a potential explanation for 
several of these observations. First, Gabor filters with posi-
tive and negative lobes have band-pass properties and thus 
convey robustness against noise (Atick and Redlich 1990; 
Zhao and Zhaoping 2011). Second, ascending neurons 
exhibit a particularly high trial-to-trial variability and sus-
ceptibility to degraded patterns in the timing of spikes, but 
their spike counts are less susceptible to external signal 
degradation (Vogel et al. 2005; Neuhofer et al. 2011). How-
ever, if down-stream neurons evaluate average spike count 
over longer time periods as proposed by the model, spike 
timing variability may not be critical.

The model for the grasshopper revealed another inter-
esting property. When we assessed the correlation with the 
behavioral data for the two feature detectors separately, one 
of the two feature detectors showed no correlation with 
the behavioral responses (r2 = 0.0) although it contributed 
substantially to the excellent prediction performance of the 
complete model (r2 = 0.87; see Fig. 3e). This finding has 
implications for neurophysiological experiments, pointing 
at a weakness of our common approach with single cell 
recordings: if we focus our search on responses of single 
neurons that correlate strongly with behaviorally relevant 
parameters, the contribution of important neurons may not 
be recognized. Perhaps we must reevaluate the potential 
contribution to signal recognition of identified neurons that 
responded to variations of song pattern parameters in a less 
obvious manner (see Stumpner et al. 1991; Stumpner and 
Ronacher 1994).

A bottleneck for the information available to the grasshop-
per’s brain is the set of approximately 20 ascending interneu-
rons (see “Principle organization of the auditory pathways in 
crickets and grasshoppers”). These neurons probably encode 
different song features and constitute a labeled line code 
(Clemens et al. 2011, 2012). However, it may be premature 
to simply equate single ascending neurons with the filters 
derived from the model (Figs. 1c, 3a). A filter of the model 
may well reflect the combined responses of several ascend-
ing neurons. A further unexpected result was that the model’s 
feature detectors responded specifically to offsets in the stim-
ulus envelopes (see Fig. 3), whereas the majority of ascend-
ing neurons we recorded from in C. biguttulus or locusts 
responded to the stimulus onsets (Stumpner et al. 1991). So 
far, among thoracic neurons, only one local neuron (SN6) is 
known that responded precisely to offsets and a few ascend-
ing neurons that responded less precisely to offsets (Stumpner 
and Ronacher 1991; Stumpner et al. 1991).

Conclusions

Our modeling approach offers a surprisingly simple 
framework to explain a variety of phenotypically different 

preference functions found in different species of crickets, 
of grasshoppers and likely also of katydids. Transitions 
between different preference functions can be modeled 
through small parameter changes of Gabor filters. These, in 
turn, can be implemented by small variations in the rela-
tive timing and strength of excitation and inhibition. This 
framework thus opens new roads for our understanding 
of evolutionary transitions that led to speciation events in 
crickets and katydids (cf. Heller 2006; Schul et al. 2014).

However, still some open questions are left. For exam-
ple, how does the model cope with more complex songs 
that are composed of different subunit types, as found, 
e.g., in the Chorthippus albomarginatus or the C. dorsatus 
group (von Helversen 1986; Stumpner and von Helversen 
1994), and in the genus Teleogryllus (Hennig 2003). Are 
more or different feature detectors needed to predict the 
preference functions for these species? A particularly inter-
esting question relates to the bipartite song of C. dorsatus 
in which the order of two song elements determines attrac-
tiveness (Stumpner and von Helversen 1992). Such a com-
parative investigation, which we now intend, may on the 
one hand offer a critical test of the model’s generality; on 
the other hand, it may provide further insights in the evolu-
tionary trajectories leading to species separation.
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