
Chapter 9
The Use of Computational Modeling
to Link Sensory Processing with Behavior
in Drosophila

Jan Clemens and Mala Murthy

Abstract Understanding both how the brain represents information and how these
representations drive behaviour are major goals of systems neuroscience. Even
though genetic model organisms like Drosophila grant unprecedented experimental
access to the nervous system for manipulating and recording neural activity, the
complexity of natural stimuli and natural behaviours still poses significant chal-
lenges for solving the connections between neural activity and behaviour. Here, we
advocate for the use of computational modelling to complement (and enhance) the
Drosophila toolkit. We first lay out a modelling framework for making sense of the
relation between natural sensory stimuli, neuronal responses, and natural behaviour.
We then highlight how this framework can be used to reveal how neural circuits
drive behaviour, using selected case studies.

9.1 The Challenge

A major goal of systems neuroscience is to understand how the brain represents
information, and how those representations are used to drive behavior. Animal brains
have evolved to solve particular problems, such as detecting themovements of prey or
the features of a suitable mate and changing patterns of locomotion accordingly.
Studying these natural behaviors allows systems neuroscientists access to the (po-
tentially conserved) computations and neural mechanisms underlying sensory pro-
cessing, decision-making, and motor control in these animal model systems.

The genetic model organism Drosophila melanogaster exhibits a range of robust
and complex behaviors such as acoustic communication during courtship (Coen et al.
2014, 2016; Clemens et al. 2015a), detection and integration of multisensory cues to
locate food sources (van Breugel and Dickinson 2014; Bell and Wilson 2016),
visually guided flight control (Clark et al. 2011; Aptekar et al. 2012; de Vries and
Clandinin 2012; Silies et al. 2014), and avoidance of threats (Reyn et al. 2014).
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RecordingDrosophila behaviors can be done in high-throughput, and its numerically
compact and largely hardwired nervous system facilitates identifying the underlying
neurons. In combination with an unparalleled genetic toolkit for manipulating and
monitoring neuronal activity during behavior, flies represent an ideal model system
for solving neural mechanisms that link sensory processing with behavior.

Here, we advocate for the use of computational modeling to complement (and
enhance) the Drosophila toolkit. Modeling, in particular, allows one to make sense
of the highly complex relation between natural sensory stimuli, neuronal responses,
and natural behavior. For instance, for natural behaviors, both sensory stimuli and
motor outputs can vary over multiple temporal and spatial scales and the underlying
transformations can be highly nonlinear—this presents a challenge for determining
what aspects of the sensory world drive a particular response. This is especially
acute for social interactions, in which the behavioral output of one animal consti-
tutes the most relevant sensory stimulus for the other animal.

In addition to illuminating the relation between sensory stimuli and behavior,
computational modeling can also reveal how neurons represent behaviorally relevant
stimuli and how these neural representations are read out to produce appropriate
motor patterns—in short, how sensory information is encoded and decoded by the
brain. Ideally, to solve these relationships, neural activity is recorded in behaving
animals. Correlated neuronal and behavioral variability can then be exploited for
inferring relationships between the two (Britten et al. 1996; Parker and Newsome
1998), and neuronal decoding models can identify the dynamical and nonlinear
relationship between neuronal codes and behavior (Haefner et al. 2013). Recent
advances have now facilitated combining neural and behavioral recordings in
head-fixed Drosophila (Seelig et al. 2010; Kim et al. 2015), but head-fixing can limit
the behavioral repertoire of the animal, particularly for social behaviors. In these
cases, modeling is particularly useful since it permits linking data sets from separate
experiments—neural recordings from fixed animals with behavioral recordings from
freely moving animals. Neural encoding models can be derived from recordings in
fixed, non-behaving animals—these models can then be used for predicting neural
responses to the sensory stimuli from behavioral data sets. Thus, computational
models can serve as stand-ins for recording neural activity during behavior and thus
facilitate overcoming experimental hurdles when linking neural codes and natural
behaviors (Parnas et al. 2013; Schulze et al. 2015; Clemens et al. 2015a; Badel et al.
2016). Here, we detail this approach using data from Drosophila (both adults and
larvae), and we discuss selected studies that highlight both the challenges and
advantages associated with computational modeling in this model system.

9.2 The Approach

Understanding how the brain generates behavior in response to sensory stimuli
involves bridging three different levels of description and can conceptually be
separated into three steps (Fig. 9.1a):
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1. Linking stimuli and behavior (“psychophysics”) to identify the stimulus features
driving behavior.

2. Linking stimuli and neural codes (“encoding”) to determine how the behav-
iorally relevant stimulus features are represented in the brain.

3. Linking neural codes and behavior (“decoding”) to reveal how neuronal activity
is read out and transformed into behavior.

Interestingly, a single modeling framework has been successfully employed in
all three steps, so-called linear-nonlinear (LN) models (Fig. 9.1b). This class of
models has been largely developed in the context of linking stimuli and neural
codes (step 2 above) (e.g., Schwartz et al. 2006; Pillow et al. 2008; Sharpee 2013;
Aljadeff et al. 2016), but has also recently found applications in predicting behavior
from both sensory stimuli and neuronal responses (e.g., Kato et al. 2014; Coen et al.
2014; Schulze et al. 2015; Clemens et al. 2015a). LN models treat the brain as a
black box, i.e., they reduce the complex action of neural networks, individual
neurons, and ion channels to a sequence of relatively simple computations. In this
light, it is surprising this framework works as often as it does for characterizing
neural mechanisms.

In general, LN models describe the transformation from one or more temporally
or spatially varying inputs to an output in two computational steps: a linear filter
and a nonlinearity (Fig. 9.1b). In the first step, a linear filter h acts as a template that
is compared to the input s and thus constitutes the stimulus pattern most effective in

Fig. 9.1 a Linking sensory stimuli, neuronal responses and behavior can conceptually be
separated into three steps: First, linking sensory stimuli and behavior to identify the stimulus
features driving behavior (psychophysics). Second, linking sensory stimuli and neuronal responses
to describe how behaviorally relevant stimulus features are represented in the brain (encoding).
Third, linking neuronal responses with behavior to understand how neuronal representations are
read out and transformed into behavior (decoding). b Linear-nonlinear (LN) models are useful in
all three steps, since they describe the input–output transformation with two computational steps:
First, a linear filter (L) acts as a template that is compared to the input. In a second step the filtered
input is transformed to the output using a fixed nonlinearity (N), which can mimic a threshold or
saturation in the input–output transformation
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driving the output s′. Mathematically, the comparison between the filter and the
input is implemented through “convolution”, where the input at each point in time
(s) and/or space (x, y) is multiplied with the template and then summed. By making
time explicit in the filter, the LN model can thus capture complex dynamical
relationships.

s0 tð Þ ¼
X

x;s;s

s x; y; t - sð Þ h x; y; sð Þ

In the second step of the LN model a static nonlinearity (NL) maps the filtered
stimulus to the output—the neuronal or behavioral response (Chichilnisky 2001;
Schwartz et al. 2006; Aljadeff et al. 2016). This part mimics properties of the input–
output relationship such as thresholds (describing the minimally effective stimulus
required to produce a response) or response saturation.

This separation of an input–output transformation into a dynamical linear and a
static nonlinear part is a powerful feature of LN models. It facilitates model
identification from often limited and noisy experimental data as well as the inter-
pretation of model structure. For example, the linear filter helps identify spatial and
dynamical properties of an input driving the response (Fig. 9.2a–c) (Suh and
Baccus 2014). A unilobed linear filter indicates that integration or smoothing

Fig. 9.2 a The action of linear filters can be best understood as lying between two extremes: a
unilobed filter with integrating properties (blue) and a bi-lobed filter with differentiating properties
(red). Typically, experimentally derived filters constitute a mixture between these purely
integrating and purely differentiating filters. b The frequency domain representation, obtained by
applying a Fourier transform to the filters in (a), reveals that the two filters have fundamentally
different frequency transfer properties: integrating filters (blue) mainly let pass low frequencies,
while differentiators (red) are selective for a limited range of frequencies, rejecting both very low
and very high frequencies. c The response properties of integrating and differentiating filters
become obvious when looking at responses to a step-like input (black): integrators sum up the
input over their duration and reject high frequencies associated with sharp edges in the stimulus,
effectively smoothing the stimulus. By contrast, differentiators only encode stimulus changes but
not sustained stimulus epochs and hence only respond transiently during the step’s on- and offset.
d The nonlinearity (NL) in an LN model transforms the filtered input (bottom) to the output. An
accelerating NL, e.g., an exponential function (red), amplifies strong inputs and accentuates
stimulus differences. By contrast, a saturating nonlinearity, e.g., a sigmoidal function (orange),
compresses large values and thereby reduces differences in the input. An optimum-like,
bell-shaped NL (purple) produces outputs only for intermediate input values
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underlies the response. By contrast, a biphasic filter—with both a positive and a
negative lobe—has differentiating properties, indicating that the response relies on
transients in the stimulus. More complex filters like Gabor filters, which correspond
to short sinusoidals whose amplitude is modulated by a Gaussian, have bandpass
properties—confining responses only to a narrow range of the input spectrum
(Clemens and Hennig 2013).

The nonlinearity in the LN model corresponds to a tuning curve for the filter—or
the selectivity of the response for filter outputs. A monotonically increasing NL
indicates that response magnitude is determined by stimulus magnitude, while a
unimodal NL indicates that only a limited range of filter outputs drives the response
(Fig. 9.2d). Separating input–output transformations thus helps to discriminate
changes in overall response gain from changes in stimulus selectivity. For example,
motivation, context, or attention can change the overall gain of responses—and
therefore affect the nonlinearity—without changing the feature selectivity of the
response represented by the filter (Baccus and Meister 2002; Rabinowitz et al.
2011; Clemens et al. 2015b).

How can one identify the two components of an LN model from experimental
data? Usually, linear filters and nonlinearities are estimated in separate steps. The
standard approach for estimating the first stage of the model—the filter—is by
averaging all stimuli leading to a response (Fig. 9.3a–b). This is most straightfor-
ward for LN models of neuronal responses: the so-called spike-triggered average
(STA) is computed by aligning the stimuli preceding all spikes and averaging them.

cSTA sð Þ ¼
X

fteventg
r teventð Þs tevent � sð Þ

where r is a binary vector that is 1 if t = tevent and 0 otherwise, s is the stimulus, s
is the temporal delay and cSTA is the STA filter. This can also be applied to
behavioral events (in lieu of spikes) like the onset of an escape behavior (Reyn et al.
2014) or the individual pulses of a fly song (Coen et al. 2016). A simple gener-
alization enables applying the STA approach to continuous outputs like neuronal
calcium levels or the amplitude of the animal’s communication signal (Kato et al.
2014; Coen et al. 2016). In these cases, the filter c is estimated by weighting the
stimulus by an analog response value r.

c sð Þ ¼
X

t

r tð Þs t � sð Þ

The STA is the special case in which the response r is either 0 (no event
occurred) or 1 (event occurred). The advantage of this approach is that the filter can
be directly computed from stimulus response pairs, without the need for compu-
tationally expensive optimization procedures. While the STA has intuitive appeal
and is useful for visualizing the relation between input and output, it provides an
accurate estimate of the stimulus feature driving the response only for inputs with
uncorrelated structure (such as white noise) (Paninski 2003; Sharpee 2013).
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However, natural stimuli are highly structured and characterized by higher-order
correlations associated with edges in visual scenes or transients in acoustic signals
(Simoncelli and Olshausen 2001; Machens and Zador 2003).

Fig. 9.3 a To illustrate the process of identifying an LN model from experimental data, we
generated a trial-averaged firing rate (red) and a sparse spike train (black lines, top) from a white
noise stimulus (gray) using an LN model with a bandpass filter and a simple, threshold-linear
nonlinearity. b Extracting all stimuli preceding a spike yields the so-called spike-triggered stimulus
ensemble (STE gray, shown for the 4 spikes in A, spike is to right—at the end—of the stimulus
snippet). The average of this STE is the spike-triggered average (STA black, average over 200
spikes), which resembles the true filter (blue) used for generating the spikes. c The nonlinearity
(NL) in the LN model can be obtained using two approaches. In the GLM approach, the
nonlinearity is fixed and only the filter can vary. The specific form of the NL is usually dictated by
the type of output to be predicted. For binary events (e.g., spike/no spike), the NL is a logistic
function. For event rates (e.g., firing rate), the NL is an exponential function. For continuous
outputs with positive and negative values the standard NL is usually a linear function. d LN
models can also be estimated using a free-form NL. One way of identifying the NL in these cases
is by filtering the stimulus with the STA and plotting the filtered stimulus versus the actual
response (gray). The relationship can then be binned and averaged or fitted using a suitable
parametric function. For the example shown here, the resulting plot recovers the thresholding NL
(black) used for generating the response in a
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Alternatives to the STA method have been developed that permit identifying the
filter without the strong requirement of uncorrelatedness of input statistics
(Truccolo et al. 2005; Pillow et al. 2008; Sharpee 2013; Williamson et al. 2015;
Aljadeff et al. 2016). These methods find the filter by directly minimizing the
mismatch between the prediction of the model and the experimentally measured
response using numerical optimization techniques in which the filter shape is
modified gradually over many iterations to improve model fit. Efficient imple-
mentations of the optimization procedure are standard in all common statistical
analysis packages and often include a procedure termed regularization, which
involves adding a penalty term to the error function that is minimized to find the
optimal filter. The penalty biases the filter to have desired or biologically “rea-
sonable” properties. For instance, stimulus correlations lead to filter structure that
does not contribute to model fit, but rather impede interpretation. By penalizing
filters with many non-zero or large values, the impact of stimulus correlations can
be minimized, greatly facilitating the interpretation of filter structure and improving
model performance for stimuli with different correlation structure (Mineault et al.
2009; Park and Pillow 2011).

Generalized linear models (GLMs) are a powerful implementation of this
approach, in which filter shape is free to vary, but the nonlinearity is constrained to
a specific parametric form (Aljadeff et al. 2016)—most commonly the NLs used are
logistic, exponential or linear (Fig. 9.3c). Pre-defining the type of nonlinearity in
the second stage of the LN model reduces the number of free model parameters and
hence the amount of data needed for fitting the model, making GLMs especially
suitable when data is scarce or noisy. However, in some cases it may be necessary
to fit a model with an unconstrained nonlinearity. In these cases, the filtered
stimulus is usually plotted against the actual responses (Fig. 9.3d) and the rela-
tionship between the two is estimated either by binning and averaging or by fitting a
suitable parametric function (Chichilnisky 2001).

9.2.1 Model Evaluation and Selection

Model performance is usually quantified as the match between actual data and
model predictions, using a quantity such as the mean-square error or the correlation
coefficient. For GLMs that predict probabilities, models should be evaluated based
on the model likelihood (see Aljadeff et al. 2016 for details). Alternatively, when
the output is the probability of a binary event—e.g., whether a spike will occur or
not—one can predict events from the model output by setting a decision threshold
(e.g., if p > 0.5 generate the event, otherwise generate no event) and use methods
from signal detection theory (e.g., the percentage of correct predictions) to assess
model performance (Coen et al. 2014). However, care needs to be taken when the
event to be predicted is extremely rare—e.g., when only 1% of the inputs induce an
event. A model that always predicts non-events would be correct in 99% of the
cases. To improve model fit, such data sets should be “balanced”, by selecting
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random subsets of data for fitting and evaluation such that events and non-events
occur with equal frequency (Coen et al. 2014).

If a model has many free parameters it can reflect properties of the data set used
for fitting, not the general input–output relation of the system under study. The
model performance calculated from the same data used to train the model can thus
greatly overestimate the model quality. The impact of this so-called “overfitting” is
usually assessed via cross-validation—computing model performance with data not
used for fitting (e.g., Schönfelder and Wichmann 2012; Aljadeff et al. 2016).
Practically, this is done by splitting the data into a training set for estimating model
parameters (usually 80% of data) and a test set for quantifying model performance
(usually 20%). This split can be randomized and repeated—parameters and per-
formance values from different runs can be averaged and their variance estimated to
statistically compare the parameters or performances of models obtained for dif-
ferent experimental conditions.

The ability to statistically compare models is essential for model selection—a
method of selecting the simplest model that can explain the response. Generally,
there exists a trade-off between model complexity and performance—a model with
many parameters usually performs better than a simpler one. Several measures of
model fit—such as the Akaike or the Bayesian information criterion (Zucchini
2000)—approach this problem by penalizing models with many parameters. In
simple cases, one can select models based on a simple cutoff criterion—e.g., that a
more complex model needs to outperform the simple one by at least 10% (Coen
et al. 2014).

9.2.2 Extensions of the Standard Linear-Nonlinear Model

The relatively simple, standard LN model with a single linear filter and a static
nonlinearity can be extended to account for more complex input–output transfor-
mations. Several extensions explicitly take into account possible nonlinear inter-
actions between multiple filters operating on a single stimulus, like spike-triggered
covariance analysis (Schwartz et al. 2006) or generalized quadratic models (Rajan
et al. 2013). However, with greater model power comes the need for more data to
identify model parameters, rendering these methods impractical when data are
limited. Often, neuronal or behavioral responses are non-stationary or dependent on
internal factors (e.g., behavioral states). While the standard GLM framework can
still accommodate these cases (Pillow et al. 2008; Fründ et al. 2014), more complex
types of non-stationarities affecting the stimulus response mapping can be modeled
by combining LNs with hidden Markov models (HMM), in which the HMM
models the switching between states and one LN model per state captures
state-specific input–output transformations (Escola et al. (2011); see Wiltschko
et al. (2015) for a related approach).

Another feature of neural computations is that they often bridge several time
scales. For instance, the decision to engage in a behavior is often based on the
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detection of a stimulus on short time scales (milliseconds) while the resulting motor
output evolves on much longer time scales (seconds or minutes). Models that
exploit this separation of time scales usually contain an explicit integration stage.
This approach has been applied successfully to study the behavioral evaluation of
courtship songs (Clemens and Hennig 2013; Clemens et al. 2015a). When extended
with a behavioral threshold, such models resemble so-called “drift diffusion mod-
els”, which integrate sensory information—in this case the output of the LN model
—to a decision boundary, the crossing of which corresponds to decision-making
(Brunton et al. 2013; DasGupta et al. 2014; Clemens et al. 2014).

9.3 Linking Sensory Stimuli with Behavior

Fitting a model to link sensory cues and behaviors requires measuring (1) the
putatively relevant sensory stimuli and (2) the behavioral output to be predicted.
A number of studies using Drosophila have examined the impact of visual,
chemosensory, or thermal cues on navigational decisions (Gomez-Marin et al.
2011; Clark et al. 2011; Censi et al. 2013; Klein et al. 2014; Gepner et al. 2015;
Schulze et al. 2015). In these studies, the detailed recording of fly movement
parameters with a quantitative, model-supported analysis of the behavior revealed
the navigational strategies with which Drosophila negotiates its environment to find
food and avoid noxious chemical, heat, or light stimuli. For example, Censi et al.
(2013) examined the visual features driving navigation in adult Drosophila during
free-flight in a circular arena. They tracked the position and angle of flies in 3D and
estimated the stimulus features—given by the distance and angle from the arena’s
wall—that triggered rapid changes in direction (or saccades). They found that flies
turn away from the wall when approaching it, e.g., they tended to turn right when
the wall was to their left. Given that their model could predict more than 90% of the
saccades, the authors concluded that the majority of flight decisions in their arena
were driven by visual cues. Gomez-Marin et al. (2011) used behavioral manipu-
lation and computational modeling to show how Drosophila larvae find the source
of an attractive odorant. The first step in understanding the computations underlying
this behavior was to reconstruct the larva’s sensory environment—in this case the
concentration of odorants at the chemosensory organ in the head. This was done, by
tracking the larval head position and determining—either through measurement or
through physical modeling—the local concentration of odorants the larva receives
at each moment in time. This highlights the importance of reconstructing the
stimulus relative to the animal’s frame of reference. An animal’s sensory experience
depends on its position relative to the stimulus source, on how the stimulus
propagates through the medium, and on the properties of their sense organs (e.g.,
their directionality). Drosophila larval behaviors can easily be classified into three
relatively stereotyped motor programs during chemotaxis: phases of straight loco-
motion (termed “runs”), intense side-to-side movement of the head (“head cast-
ing”), and fast reorientation events (“turns”). Models that explain the relation
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between chemosensory cues and navigation behaviors usually use the rate or
probability of performing one of these behaviors as a function of the stimulus
(Gomez-Marin et al. 2011; Gepner et al. 2015; Schulze et al. 2015;
Hernandez-Nunez et al. 2015). Based on an accurate description of the larva’s
sensory experience as well as of its complete body posture during navigation, the
authors determined the features of the odor concentration gradient that triggered
turning and head casting using STA-like analyses. This revealed the behavioral
program controlling navigation: decreases in concentration stop a run and induce
head casting. Upon realizing that it has moved away from the source, the larva
actively samples the concentration gradient by casting its head, which translates
weak spatial differences in concentration into strong temporal differences. When
perceiving an increase in concentration during the head cast, the larva initiates the
turn, therefore reorienting it towards higher concentration. This study exemplifies
the power of modeling for revealing how different behavioral modules—running,
head casting, and turning—are engaged in a stimulus-dependent manner to support
successful navigation behavior.

Modeling is also useful to characterize sensorimotor relationships during more
complex behaviors, like social interactions. During courtship, Drosophila males
chase females and produce a song by vibrating their wings. The song’s pattern is
evaluated by the female and informs her mating decision (Coen et al. 2014;
Clemens et al. 2015a). Coen et al. (2014) investigated the origin of the male’s
highly variable song pattern. The song consists of two, relatively stereotyped modes
—“pulse” and “sine”—which are sequenced into variable bouts, stemming from the
fact that the duration of each song mode is not fixed and that males rapidly tran-
sition between the two modes. Coen et al. (2014) asked whether the variable bout
structure is purely stochastic—e.g., due to noise in the song-producing circuits—or
whether it is the outcome of the male dynamically and adaptively shaping song
structure in response to sensory cues. The authors tracked the movement of the
male and female, along with recording the song produced by the male—the
movements and interactions of the pair served as inputs to a GLM with regular-
ization. The regularization during model fitting (Mineault et al. 2009) helped the
authors reduce the impact of strong correlations among different inputs, in addition
to minimizing temporal correlations within a single input. This model-based
analysis of the behavior revealed that almost every aspect of song patterning—song
starts, the choice of song mode, or song ends—are predicted by the movements and
interactions of the flies. For instance, the distance between male and female is most
predictive of song starts: the filter that predicts whether or not a song start will occur
reveals that the male only begins a song in sine mode when near the female. In a
follow-up study, using the same GLM method, the authors showed that not only do
males bias toward pulse mode (the louder song mode) when far away from the
female, but they also modulate the amplitude of each pulse within this mode relative
to distance to the female (Coen et al. 2016). Overall, the model-based analysis of
courtship interactions revealed that the diversity present in song structure results
from the male dynamically and adaptively controlling when and what to sing in
response to changing feedback from the female.
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These three case studies showcase that modeling can facilitate extracting
information from large and complex behavioral data sets. In providing a detailed
and quantitative description of the mapping between the animal’s sensory experi-
ence and its behavior, these studies (1) reveal the computations that govern
behavior and (2) lay the groundwork for identifying the neural circuits and neural
codes underlying the behavior.

9.4 Linking Sensory Stimuli with Neural
Responses—Neuronal Encoding Models

How are behaviorally relevant stimulus features represented by the brain? Modeling
—especially the use of LN models—has a long tradition in characterizing neural
responses to sensory stimuli for many model systems and sensory modalities (see
e.g. Schwartz et al. 2006; Aljadeff et al. 2016). In the context of Drosophila systems
neuroscience, LN models have provided insight into the dynamical stimulus fea-
tures driving neuronal responses in the olfactory system (Nagel and Wilson 2011;
Martelli et al. 2013), visual system (de Vries and Clandinin 2012; Seelig and
Jayaraman 2013; Behnia et al. 2014), and auditory system (Clemens et al. 2015a).
These LN models provide information about what sensory information is available
to the brain for driving behaviors and in which format it is represented. Moreover,
the LN model of a neuron—obtained from responses recorded in fixed animals, for
example—can serve as a surrogate for neural recordings when it is not feasible to
record neural activity during behavior. This is particularly useful in organisms like
Drosophila with genetically and morphologically identifiable cell types, whose
response properties are stereotyped in most, but not all (e.g., Murthy et al. 2008),
cases.

As an example, (Clemens et al. 2015a) used an LN model extension to char-
acterize the encoding of sound in the fly brain. The authors recorded intracellularly
from a set of 10, morphologically diverse neurons from early stages of the fly’s
auditory pathway: the antennal mechanosensory and motor center (AMMC), which
is the projection area of the auditory receptor neurons, and the wedge and the
ventrolateral protocerebrum, which receives its main auditory inputs from the
AMMC. Sound is largely encoded via graded membrane voltage (Vm) responses,
not spikes. The authors hence fit LN models to the neuronal membrane voltage
changes. A standard LN model was not sufficient to reproduce the Vm traces of
these neurons due to prominent adaptation, and hence the authors used an extension
—a so-called “adaptive LN model”—in which the stimulus is first processed by an
adaptation stage and the adapted stimulus is then fed into a standard LN model with
a filter and a nonlinearity. Crucially, the model, which was fitted to neuronal
responses for artificial song pulse trains, generalized well to predict Vm responses
to natural courtship song, suggesting that these computational steps are sufficient to
describe the neural code for song processing in these auditory neurons. While
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adaptation parameters were relatively diverse, reflecting the diversity of adaptation
time scales and strengths for the neurons in the data set, the shapes of the linear
filters and nonlinearities were similar across the models of all 10 cell types, which is
surprising given the large morphological diversity of the neurons in the data set.
The linear filters were biphasic—with a dominant positive lobe followed by a
shallow but long negative lobe. The positive lobe conveys low-pass filter properties
—smoothing the stimulus envelope—while the negative lobe has a weakly differ-
entiating effect—it accentuates transients like the onsets or offsets of song bouts
(Fig. 9.2a–c). Analysis of female behavioral responses to male song during natural
courtship revealed that female slowing—a proxy of her willingness to mate—was
strongly correlated with the duration of song bouts over timescales of tens of
seconds. The temporal properties of the neuronal code for song in the auditory
system are well-suited for extracting information about bout structure. Bout starts
are encoded in positive Vm transients due to adaptation, negative Vm transients
encode bout ends due to the negative filter lobe, and the amount of song is rep-
resented in sustained responses during bouts due to the positive filter lobe.

Schulze et al. (2015) used models to show how responses of larval olfactory
sensory neurons (OSN) encode the temporal pattern of odorant concentration as
encountered during chemotaxis. Instead of using a linear-nonlinear model to rep-
resent the dynamical codes underlying concentration coding in these OSN, they
employed a model of the signal transduction cascade involved in the transformation
of odorant concentration to OSN firing rate. Similar models have been used to
model neural codes in other chemosensory systems (Kato et al. 2014) or in the
vertebrate retina (Ozuysal and Baccus 2012). This encoding model revealed the
temporal stimulus features represented in the time-varying OSN firing rate: for
positive concentration gradients, OSNs encode the slope; for negative gradients,
OSNs act as offset detectors. These temporal features of olfactory stimuli are known
to guide chemotaxis behaviors (see above, Gomez-Marin et al. 2011): the duration
of runs as well as the initiation and direction of turns are guided by positive slopes
in concentration, while stopping and head casting occur upon abrupt decreases of
concentration. Again, the properties of the dynamical codes in OSNs directly
support navigation behavior. While these two studies highlight the power of careful
quantification of behavior for interpreting neural codes, these interpretations must
ultimately be tested by linking neural codes directly with behavior via decoding
models.

9.5 Linking Neural Responses with Behavior—Neuronal
Decoding Models

Having identified both the sensory cues driving behavior and how these cues are
encoded by the brain, the next task is to determine how neuronal codes are
transformed into behavior. Modeling helps (1) to infer the brain’s readout strategies
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and (2) to identify the properties of neural codes most relevant for driving a par-
ticular behavior. As laid out in the Introduction, the neural responses for fitting
decoding models can be directly recorded during the behavior, or, if not feasible,
obtained either by replay of the animal’s sensory experience while recording from a
fixed preparation or by generating surrogate neuronal responses through virtual
recordings from neural encoding models.

Several studies of Drosophila have employed decoding models to investigate the
relationship between chemosensory codes and behavior (Parnas et al. 2013; Gepner
et al. 2015; Hernandez-Nunez et al. 2015; Badel et al. 2016; Bell and Wilson 2016).
For example, (Hernandez-Nunez et al. 2015) asked how the activity of gustatory
receptor neurons (GRN) affects chemotaxis behavior. Optogenetic activation with
temporal white noise patterns and STA analyses revealed the filters underlying the
transition from run to turn behavior (and from turn to run behavior). Comparing the
STA filters obtained from single-GRN activation experiments to those for
multi-GRN activation experiments revealed that the magnitude as well as the shape
of the filters for multi-GRN activation could not be predicted from a simple, linear
combination of single-GRN STA filters. This demonstrated that gustatory infor-
mation is integrated nonlinearly between individual GRNs in the context of
behavior.

Modeling was also used to infer algorithms underlying the integration of sensory
cues across modalities. Gepner et al. (2015) studied how visual and chemosensory
cues are integrated during larval orientation behavior. Visual stimuli were provided
using blue light and chemosensory neurons were activated optogenetically (via
csChrimson, Klapoetke et al. 2014) using red light, which is outside the sensitivity
range of the photoreceptors. Stimulation with temporal white noise patterns allowed
the authors to infer the features driving behavioral responses (turn rates) for light
and fictive chemosensory stimulation via STA analyses. This revealed that visual
cues increased turn rates, while attractive chemosensory cues decreased turn rates.
Using a decoding approach, they then determined how these two opposing cues that
feed into the same motor output (turn rate) are combined. Specifically, they tested
whether the two modalities were combined using “early integration” versus “in-
dependent pathways”. That is, whether the filtered signals from each modality were
linearly combined to yield a single “turn rate” signal, or whether each modality
generated its own, independent turn rate, which was then summed. Their modeling
approach lent strong support to the early integration model.

Other studies have examined odortaxis in adult Drosophila and used decoding
models to determine how the neural population code in the fly’s antennal lobe
(AL) is read out by downstream circuits. Each glomerulus in the AL receives
exclusive input from OSNs expressing a single odorant receptor. Second-order
projection neurons (PN) typically innervate single glomeruli and link the AL to
higher-order olfactory centers in the lateral horn (for innate behaviors) and the
mushroom body (for learned behaviors) (Jefferis et al. 2007; Aso et al. 2014).
Similar to Hernandez-Nunez et al. (2015), Bell and Wilson (2016) asked how
glomerular activation is translated into walking behavior to odors (odortaxis).
Specifically, they tested whether the behavioral effects of multiple OSN activation
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sum linearly or nonlinearly. Interestingly, responses to pairwise activation fre-
quently did not match the sum of the responses to the activation of the individual
OSN in a pair. Instead, the responses to pairwise OSN activation often equaled the
responses to the stronger OSN in the pair, suggesting a “max” pooling of OSN
activity by downstream circuits. In a similar study, Badel et al. (2016) used odorant
stimulation—not optogenetic activation of individual OSNs—to directly link nat-
uralistic glomerular codes for odors to odortaxis in flying Drosophila. They showed
that the glomerular code is relatively linear, since the neuronal responses to mix-
tures can be predicted from the responses to their constituents. This was consistent
with the observation of linearity in the behavioral responses to mixtures. However,
by examining behavioral responses to odors presented in sequences, they found that
odortaxis over longer timescales depends on the olfactory “context”—the other
odors in the sequence. This context effect can be strong and even switch the valence
of an individual odor from attractive to aversive and is inconsistent with a linear
glomerular code. The authors then used an extension of their linear decoding model
that includes canonical computations—mean subtraction and divisive normalization
—to reproduce the context effect. These computations are likely implemented in
higher-order olfactory areas downstream of the AL glomeruli.

The models mentioned above infer behavioral readout strategies from a static
description of neuronal population activity—but modeling can also facilitate
reading out dynamical neuronal responses. For example, Schulze et al. (2015) used
a nonlinear dynamic encoding model of Drosophila larval OSNs (see above) to
relate neural responses in OSNs to behavioral dynamics (time-varying turn rates).
The decoding model used was a GLM and consisted of a single linear weight
followed by a sigmoidal transform. To determine whether OSN dynamics were
essential for driving behavioral dynamics, the authors predicted behavior either
directly from the stimulus or from model OSN responses. Taking into account OSN
dynamics greatly improved behavioral predictions, suggesting the neuronal
dynamics in the sensory periphery strongly shape behavioral dynamics.

In the Clemens et al. (2015a) study (see above), the authors discovered that
female slowing during courtship, a proxy of her willingness to mate, was strongly
associated with long timescale features of the male’s courtship song—in particular,
the average duration of song bouts over timescales of tens of seconds. The authors
then used a decoding model to link the neuronal responses to song in the auditory
system with the female slowing response. The highly interactive nature of the
courtship chase prevented recording neural activity in the auditory system during
behavior and the authors instead relied on an encoding model to reconstruct the
neural representation of song recorded during courtship. The encoding model (see
above) consisted of two computations: an adaptation stage, which produced posi-
tive transients at the start of each song bout, and a linear filter with a positive and a
negative lobe, which produced sustained neural responses during a bout and neg-
ative neural responses at the end of each bout. Using a decoder, the authors asked:
(i) How is this neuronal representation of bout structure read out? and (ii) What
encoder computations are crucial for producing the behavior? They started with a
decoder that transformed the reconstructed neuronal response to female speed in
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two computational steps. First, a sigmoidal nonlinearity transformed the neuronal
responses and mimicked common nonlinearities in putative downstream circuits
like thresholds or saturation. Second, an integration stage linked the timescales of
neuronal computations in the auditory system (a few hundred milliseconds) to the
long behavioral timescales (tens of seconds). By manipulating the encoding model,
the authors determined the computations in the auditory system essential for
reproducing the behavior. Although both adaptation and biphasic filtering were
necessary to reproduce the neuronal responses to song in the auditory system, the
behavior mainly relied on aspects of the neuronal response associated with biphasic
filtering—sustained neural responses during a bout and negative neural responses at
the end of each bout. While the integral of the sustained response corresponded to
the amount of song, the integral of the negative offset response encoded the number
of bouts (since each bout in the integration time window produced the same,
stereotypical offset response). Thus, the decoder predicted behavior by combining
song amount and bout number. Because bout duration, which the behavioral
analysis had identified as being most strongly associated with the female’s slowing
behavior, is given by the ratio of these two quantities, the authors modified their
decoder to directly compute bout duration from the neuronal responses. This
decoder almost perfectly reproduced the behavioral relation between bout duration
and female speed during natural courtship. Overall, the decoding analysis revealed
(1) the aspects of the neural representation of song in the auditory system likely to
be essential for generating behavior (in this case, biphasic filtering) and (2) probable
computations (such as integration and division) that transform neural codes in the
auditory system into behavior. The approach highlights how computational mod-
eling can both help to overcome the experimental difficulties associated with
recording neuronal activity during interactive, social behaviors and to generate
hypotheses regarding the computations underlying sensorimotor transformations.

9.6 Experimental Tests of Computational Models

The above examples reveal how modeling can provide insight into the neural
computations that transform natural stimuli into behavior. However, to establish
causality, models should be tested experimentally. Experimental tests can involve
manipulations of sensory stimuli, of known sensory pathways, or of the activity of
subsets of neurons. This is greatly facilitated in Drosophila via genetic tools for
activating or inactivating genes or neuronal activity during behavior. For instance,
based on behavioral analyses, Ramdya et al. (2015) posited that collective behavior
in Drosophila relies on mechanosensory cues. While individual flies only poorly
avoid aversive odorants, groups of flies, by bumping into each other, “push” each
other out of the aversive odor zone. The authors genetically activated and inacti-
vated leg mechanosensory neurons to demonstrate the sufficiency and necessity of
mechanosensory cues for this collective behavior. That is, inactivation abolished the
behavior while activation was sufficient to induce flies to move. Similarly, the
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decoding model by Badel et al. (2016) (see above) linked the olfactory population
code in the fly’s antennal lobe to odortaxis and predicted that individual glomeruli
have only a small impact on navigational decisions. Consistent with this notion,
they found that inactivating single glomeruli negligibly changed behavioral
responses.

Another strategy for testing models fitted to natural behavior is to use artificial,
controlled stimuli. This approach has a long tradition for testing models of visual
motion-processing in Drosophila, where models are tested by monitoring the
behavioral responses of tethered flies to artificial visual stimuli (Eichner et al. 2011;
Fitzgerald et al. 2015; Leonhardt et al. 2016). This strategy was also employed by
Coen et al. (2016), who used GLMs to identify the distance between males and
females during courtship as the most significant predictor of the male’s song
amplitude. The authors tested their model using a virtual reality setup in which the
visual cues available to the male could be precisely manipulated. The fly was
tethered and allowed to walk on an air-suspended ball in front of a computer screen.
Artificial visual stimuli—a black square moving on a white background with
movement statistics similar to those encountered during courtship by the male—
elicited song amplitude modulation as a function of the size of the square, a visual
feature strongly correlated with distance. Similarly, van Breugel and Dickinson
(2014) used stimulus manipulations to test the behavioral observation that olfactory
and visual stimuli interact during odortaxis in free flight. Specifically, they placed
high-contrast visual cues within a flight tunnel to show that attractive olfactory
stimuli increase the visual saliency of objects.

In the light of correlations between sensory cues, models derived from natural
behaviors often have difficulties discriminating between internally and externally
generated cues (Censi et al. 2013). In Coen et al. (2014), GLMs predicted an
association between male forward velocity and song mode—faster males were more
likely to produce the so-called “pulse song” versus “sine song”. However, the
nature of the sensory cue associated with male forward velocity was unclear. Was
the cue the optic flow generated from the male’s own motion? Was it a signal
internally generated, like an efference copy of the motor drive or proprioceptive
feedback from the muscles or joints? Using flies carrying mutations that ablate all
photoreceptor cells, the authors found that models built on blind male data per-
formed similarly to models built on wild type male data—in both cases, the male’s
own motion effectively predicted song mode choice. To more explicitly test for a
link between male locomotor circuits and song patterning, the authors fixed the
male flies in place and induced singing by optogenetically activating song com-
mand neurons. Comparing the optogenetically induced song of fixed versus freely
moving males, they found that males that cannot move produced more “pulse
song”, demonstrating that interfering with locomotion alters singing. These
examples highlight how experimental tests reduce ambiguity regarding which
sensory cues and neural circuits drive behavior.
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9.7 Prospects

The case studies cited above highlight how the use of computational modeling
powerfully complements the Drosophila genetic toolkit for solving open questions
in systems neuroscience. We expect that methodological innovations—both
experimental and theoretical—will further increase the utility of computational
modeling in this model system. Imaging technology now permits recording from
larger numbers of Drosophila neurons simultaneously (Bouchard et al. 2015; Harris
et al. 2015; Lu et al. 2016; Aimon et al. 2016) or from subsets of neurons in freely
behaving flies (Grover et al. 2016). Computational models applied to such data will
facilitate both interpreting population neural activity and connecting neural activity
with behavior. In parallel, the use of unsupervised classification methods has
revealed stereotyped structure in animal behavior—an animal’s movements over
time can be described as sequences of discrete behavioral modules (Vogelstein et al.
2014; Berman et al. 2014; Berman et al. 2016; Wiltschko et al. 2015). The task of
computational modeling will now be to determine how sensory cues and internal
states affect behavioral sequencing, and how neural codes underlie the choice of
behavioral modules. In conclusion, combining the wealth of genetic tools to dissect
the neural circuits underlying behavior in Drosophila with advances in machine
learning and computational modeling now makes it more feasible than ever to link
sensory processing, neural representations, and behavior in this system.
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